• Professional Development
  • Medicine & Nursing
  • Arts & Crafts
  • Health & Wellbeing
  • Personal Development

327 Fracture courses

🔥 Limited Time Offer 🔥

Get a 10% discount on your first order when you use this promo code at checkout: MAY24BAN3X

2 Day First Aid at Work Refresher

5.0(52)

By Direct Training (GB) Ltd

A Health & Safety Executive Approved course that complies with First Aid Regulations 1981. This is a refresher course for those that have previously attended and passed the First Aid At Work Course and now need to renew their certification. Who Should Attend? People that hold a valid First Aid At Work Certificate Course Content Health & Safety Using a First Aid Kit Incident Management Resuscitation / CPR - Adult, Child, Baby AED Familiarisation Recovery Position Choking - Adult, Child, Baby Burns & Scalds Poisoning including Anaphylaxis Epilepsy Shock Bleeding & Nose Bleeds Asthma Head Injuries Fractures, Sprains & Strains Many Other Specific Conditions Course Duration: Two Days Assessment / Certification Independent qualified assessors carry out the assessments. Each delegate that passes will receive a Certificate valid for Three years. Please note that training can take place upto 3 months in advance of the Certificate expiry date. The new Certificate will be dated from the expiry date of the old Certificate.

2 Day First Aid at Work Refresher
Delivered In-Person in EckingtonTwo days, Jun 4th, 08:00 + 6 more
£159

3 Day First Aid at Work Initial

5.0(52)

By Direct Training (GB) Ltd

A Health & Safety Executive Approved course that complies with First Aid Regulations 1981 and includes AED training. This is an in-depth course that will take you through a wide range of injuries and illnesses that occur in the workplace. Who Should Attend? People that are in high-risk work environments. Nominees by an employer who deems that their business requires a First Aider. Course Content * Health & Safety * Using a First Aid Kit * Incident Management * Resuscitation / CPR - Adult, Child, Baby * AED Familiarisation * Recovery Position * Choking - Adult, Child, Baby * Burns & Scalds * Poisoning including Anaphylaxis * Epilepsy * Shock * Bleeding & Nose Bleeds * Asthma * Head Injuries * Fractures, Sprains & Strains * Many Other Specific Conditions Course Duration: Three Days (18 Hours) Certification Independent qualified assessors carry out the assessments. Each delegate that passes will receive a Certificate valid for Three years.

3 Day First Aid at Work Initial
Delivered In-PersonTwo days, Jun 10th, 08:00 + 3 more
£219

Geomechanics

By Asia Edge

ABOUT THIS TRAINING COURSE  This five-day course provides an intermediate level of understanding of the geomechanical factors that affect wellbore instability, sand production and hydraulic fracture design.  The course is structured such that upon completion, participants will have understood the value that geomechanics can bring to drilling, completion and production operations and will be able to leverage this value wherever it applies.  The course emphasis will be on integrating the topics presented through a combination of lectures, case-studies and hands-on exercises. A special focus will be on how geomechanics knowledge is extracted from routinely acquired well data and how it is applied in the prediction and prevention of formation instability. Course Highlights The course is essentially non-mathematical and makes wide use of diagrams, pictures and exercises to illustrate the essential concepts of geomechanics * Essential Rock Mechanics Principles * Wellbore Stability Analysis * Anisotropic Rock Properties for unconventional projects * Lost Circulation and Wellbore Strengthening applications * Sand Production Management * Input to Hydraulic Fracture design * Salt instability Training Objectives By attending this training, you will be able to acquire the following: * Apply the basic concepts of geomechanics to identify, predict and mitigate against formation instability during drilling, completion and production Target Audience This course is intended for Drilling Engineers, Well Engineers, Production Technologists, Completion Engineers, Well Superintendents, Directional Drillers, Wellsite Supervisors and others, who wish to further their understanding of rock mechanics and its application to drilling and completion. There is no specific formal pre-requisite for this course.  However, attendees are requested to have been exposed to drilling, completions and production operations in their positions and to have a recommended minimum of 3 years of field experience. Trainer Your Expert Course Instructor is an operational geomechanics advisor with over 46 years of experience in exploration, development and production in the upstream oil and gas industry.  After obtaining a BSc (Hons) Physics degree from Aberdeen University, he worked for a variety of oil service companies in wireline operations, management and formation evaluation, before joining Schlumberger in 1995.  Since 2000 he has worked principally in real-time geomechanics operations and developing acousto-geomechical applications, taking on the role of geomechanics advisor and technical manager within the Europe-Africa area of operations.  Before forming his own company in 2014, Your Expert Course Instructor was one of Schlumberger's principal instructors, delivering cross-discipline internal and external geomechanics training to petrophysicists, geologists, reservoir, petroleum, well construction and drilling engineers at operating company locations, training centers and operational centers worldwide.  Through extensive operational and wellsite experience gained in the North Sea, Europe, Africa, South America and the Far East, he has gained a broad based knowledge of drilling, production, log data acquisition, analysis and interpretation that has allowed him to develop and deliver pragmatic solutions to the geomechanical challenges of drilling, sand production, fracturing and unconventional reservoirs, faced by operators. His principal interests include the development and application of acousto-geomechanical techniques for the evaluation of anisotropic formations and fracture systems and the identification and prevention of wellbore instability POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information about post training coaching support and fees applicable for this. Accreditions And Affliations

Geomechanics
Delivered in-person, on-request, onlineDelivered Online & In-Person in Internationally
£3943 to £4586

Carbonate Reservoir Geology

By Asia Edge

ABOUT THIS TRAINING COURSE This 5 full-day course has been designed to develop skills in understanding the geometry and petrophysical characteristics of carbonate reservoirs. Depositional fabric, grain type and size and subsequent diagenetic modifications are the major controls on carbonate reservoir behaviour. The complex inter-relationship of the depositional and burial history can be unravelled to allow prediction of reservoir facies and reconstruction of three-dimensional reservoir models. This course will demonstrate the value of the reservoir model in volumetric assessment and development of carbonate reservoirs. *Previous knowledge of carbonate sedimentology is not required. Course Content in Summary: 1. Carbonate reservoirs: Basic principles; depositional concepts; grain types; textures and fabrics; environmental reconstruction. 2. The reservoir model - depositional and diagenetic characteristics: Sabkha/tidal flat; lagoon; shelf; reef (rudist and coral/algal); barrier/shoal; slope and redeposited; aeolian and lacustrine; karst plays. 3. Carbonate diagenesis: Primary and secondary porosity; compaction; pressure solution; cementation; dolomitisation; porosity generation and destruction; fractures. 4. Carbonate sequence stratigraphy 5. Log response in carbonate rocks: Gamma; sonic; neutron; density; FMS. 6. Reservoir assessment: Fracture reservoirs; reservoir modelling; volumetric assessment in correlation and mapping; effects of capillary pressure; interface with engineering. Training Objectives By attending this course, participants will be able to: * Understand carbonate depositional systems and controls. * Recognise and model controls on reservoir quality and pore systems, including diagenesis and fracturing. * Understand and apply carbonate seismic stratigraphy and sequence stratigraphy. * Interpret log responses. Target Audience This course is intended for petroleum geologists, explorationists, petrophysicists, geophysicists and engineers involved with exploration of carbonate plays and development of carbonate reservoirs. Trainer Your expert course leader is a Director and Senior Consultant Geologist who has worked on various carbonate consultancy projects, conducted detailed sedimentological, sequence stratigraphic and diagenetic technical studies and delivered training programmes. He was formerly Managing Director of Robertson UK Limited and was responsible for the integration between different disciplines, recognition, and encouragement of technical innovation and research and development programmes across all oil and gas divisions in the company. He was also responsible for all aspects of the performance of the main Geological, Geophysical and Reservoir Engineering Services in the company. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information post training support and fees applicable Accreditions And Affliations

Carbonate Reservoir Geology
Delivered in-person, on-request, onlineDelivered Online & In-Person in Internationally
£2493 to £2899

Level 3 Paediatric First Aid Training

By SAET Training Centre

12 hour practical course for administration of safe, prompt, effective first aid in situations which can arise when looking after children. This course meets first aid training requirements under Ofsted.

Level 3 Paediatric First Aid Training
Delivered In-Person in Stourport On SevernFull day, Jun 19th, 08:30 + 1 more
£165

Gas Lift Design & Optimization using NODAL Analysis

By Asia Edge

ABOUT THIS TRAINING COURSE Gas-lift is one of the predominant forms of artificial lift used for lifting liquids from conventional, unconventional, onshore and offshore assets. Gas-lift and its various forms (intermittent lift, gas-assisted plunger lift) allows life of well lift-possibilities when selected and applied properly. This 5-day training course is designed to give participants a thorough understanding of gas-lift technology and related application concepts. This training course covers main components such as application envelope, relative strengths and weaknesses of gas-lift and its different forms like intermittent lift, gas-assisted plunger lift. Participants solve examples and class problems throughout the course. Animations and videos reinforce the concepts under discussion. Unique Features: * Hands-on usage of SNAP Software to solve gas-lift exercises * Discussion on digital oil field * Machine learning applications in gas-lift optimization Training Objectives After the completion of this training course, participants will be able to: * Understand the fundamental theories and procedures related to Gas-Lift operations * Easily recognize the different components of the gas-lift system and their basic structural and operational features * Be able to design a gas-lift installation * Comprehend how digital oilfield tools help address ESP challenges * Examine recent advances in real-time approaches to the production monitoring and lift management Target Audience This training course is suitable and will greatly benefit the following specific groups: * Production, reservoir, completion, drilling and facilities engineers, analysts, and operators * Anyone interested in learning about implications of gas-lift systems for their fields and reservoirs Course Level * Intermediate * Advanced Training Methods The training instructor relies on a highly interactive training method to enhance the learning process. This method ensures that all participants gain a complete understanding of all the topics covered. The training environment is highly stimulating, challenging, and effective because the participants will learn by case studies which will allow them to apply the material taught in their own organization. Course Duration: 5 days in total (35 hours). Training Schedule 0830 - Registration 0900 - Start of training 1030 - Morning Break 1045 - Training recommences 1230 - Lunch Break 1330 - Training recommences 1515 - Evening break 1530 - Training recommences 1700 - End of Training The maximum number of participants allowed for this training course is 20. This course is also available through our Virtual Instructor Led Training (VILT) format. Prerequisites: * Understanding of petroleum production concepts. * Each participant needs a laptop/PC for solving class examples using software to be provided during class. Laptop/PC needs to have a current Windows operating system and at least 500 MB free disk space. Participants should have administrator rights to install software. Trainer Your expert course leader has over 35 years' work-experience in multiphase flow, artificial lift, real-time production optimization and software development/management. His current work is focused on a variety of use cases like failure prediction, virtual flow rate determination, wellhead integrity surveillance, corrosion, equipment maintenance, DTS/DAS interpretation. He has worked for national oil companies, majors, independents, and service providers globally. He has multiple patents and has delivered a multitude of industry presentations. Twice selected as an SPE distinguished lecturer, he also volunteers on SPE committees. He holds a Bachelor's and Master's in chemical engineering from the Gujarat University and IIT-Kanpur, India; and a Ph.D. in Petroleum Engineering from the University of Tulsa, USA. Highlighted Work Experience: * At Weatherford, consulted with clients as well as directed teams on digital oilfield solutions including LOWIS - a solution that was underneath the production operations of Chevron and Occidental Petroleum across the globe. * Worked with and consulted on equipment's like field controllers, VSDs, downhole permanent gauges, multiphase flow meters, fibre optics-based measurements. * Shepherded an enterprise-class solution that is being deployed at a major oil and gas producer for production management including artificial lift optimization using real time data and deep-learning data analytics. * Developed a workshop on digital oilfield approaches for production engineers. Patents: * Principal inventor: 'Smarter Slug Flow Conditioning and Control' * Co-inventor: 'Technique for Production Enhancement with Downhole Monitoring of Artificially Lifted Wells' * Co-inventor: 'Wellbore real-time monitoring and analysis of fracture contribution' Worldwide Experience in Training / Seminar / Workshop Deliveries: * Besides delivering several SPE webinars, ALRDC and SPE trainings globally, he has taught artificial lift at Texas Tech, Missouri S&T, Louisiana State, U of Southern California, and U of Houston. * He has conducted seminars, bespoke trainings / workshops globally for practicing professionals: * Companies: Basra Oil Company, ConocoPhillips, Chevron, EcoPetrol, Equinor, KOC, ONGC, LukOil, PDO, PDVSA, PEMEX, Petronas, Repsol, , Saudi Aramco, Shell, Sonatrech, QP, Tatneft, YPF, and others. * Countries: USA, Algeria, Argentina, Bahrain, Brazil, Canada, China, Croatia, Congo, Ghana, India, Indonesia, Iraq, Kazakhstan, Kenya, Kuwait, Libya, Malaysia, Oman, Mexico, Norway, Qatar, Romania, Russia, Serbia, Saudi Arabia, S Korea, Tanzania, Thailand, Tunisia, Turkmenistan, UAE, Ukraine, Uzbekistan, Venezuela. * Virtual training provided for PetroEdge, ALRDC, School of Mines, Repsol, UEP-Pakistan, and others since pandemic. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information post training support and fees applicable Accreditions And Affliations

Gas Lift Design & Optimization using NODAL Analysis
Delivered in-person, on-request, onlineDelivered Online & In-Person in Internationally
£3749 to £4360

Artificial Lift and Real-Time Production Optimization in Digital Oilfield

By Asia Edge

ABOUT THIS TRAINING COURSE Artificial lift systems are an important part of production operations for the entire lifecycle of an asset. Often, oil and gas wells require artificial lift for most of the life cycle. This 5-day training course offers a thorough treatment of artificial lift techniques including design and operation for production optimization. With the increasing need to optimize dynamic production in highly constrained cost environments, opportunities and issues related to real-time measurements and optimization techniques needs to be discussed and understood. Artificial lift selection and life cycle analysis are covered. These concepts are discussed and reinforced using case studies, quizzing tools, and exercises with software. Participants solve examples and class problems throughout the course. Animations and videos reinforce the concepts under discussion. Understanding of these important production concepts is a must have to exploit the existing assets profitably. Unique Features: * Hands-on usage of SNAP Software to solve gas-lift exercises * Discussion on digital oil field * Machine learning applications in gas-lift optimization Training Objectives After the completion of this training course, participants will be able to: * Understand the basics and advanced concepts of each form of artificial lift systems including application envelope, relative strengths, and weaknesses * Easily recognize the different components from downhole to the surface and their basic structural and operational features * Design and analyze different components using appropriate software tools * Understand challenges facing artificial lift applications and the mitigation of these challenges during selection, design, and operation * Learn about the role of digital oilfield tools and techniques and their applications in artificial lift and production optimization * Learn about use cases of Machine learning and artificial intelligence in the artificial lift Target Audience This training course is suitable and will greatly benefit the following specific groups: * Production, reservoir, completion, drilling and facilities engineers, analysts, and operators * Anyone interested in learning about selection, design, analysis and optimum operation of artificial lift and related production systems will benefit from this course. Course Level * Intermediate * Advanced Training Methods The training instructor relies on a highly interactive training method to enhance the learning process. This method ensures that all participants gain a complete understanding of all the topics covered. The training environment is highly stimulating, challenging, and effective because the participants will learn by case studies which will allow them to apply the material taught in their own organization. Course Duration: 5 days in total (35 hours). Training Schedule 0830 - Registration 0900 - Start of training 1030 - Morning Break 1045 - Training recommences 1230 - Lunch Break 1330 - Training recommences 1515 - Evening break 1530 - Training recommences 1700 - End of Training The maximum number of participants allowed for this training course is 20. This course is also available through our Virtual Instructor Led Training (VILT) format. Prerequisites: * Understanding of petroleum production concepts. * Each participant needs a laptop/PC for solving class examples using software to be provided during class. Laptop/PC needs to have a current Windows operating system and at least 500 MB free disk space. Participants should have administrator rights to install software. Trainer Your expert course leader has over 35 years' work-experience in multiphase flow, artificial lift, real-time production optimization and software development/management. His current work is focused on a variety of use cases like failure prediction, virtual flow rate determination, wellhead integrity surveillance, corrosion, equipment maintenance, DTS/DAS interpretation. He has worked for national oil companies, majors, independents, and service providers globally. He has multiple patents and has delivered a multitude of industry presentations. Twice selected as an SPE distinguished lecturer, he also volunteers on SPE committees. He holds a Bachelor's and Master's in chemical engineering from the Gujarat University and IIT-Kanpur, India; and a Ph.D. in Petroleum Engineering from the University of Tulsa, USA. Highlighted Work Experience: * At Weatherford, consulted with clients as well as directed teams on digital oilfield solutions including LOWIS - a solution that was underneath the production operations of Chevron and Occidental Petroleum across the globe. * Worked with and consulted on equipment's like field controllers, VSDs, downhole permanent gauges, multiphase flow meters, fibre optics-based measurements. * Shepherded an enterprise-class solution that is being deployed at a major oil and gas producer for production management including artificial lift optimization using real time data and deep-learning data analytics. * Developed a workshop on digital oilfield approaches for production engineers. Patents: * Principal inventor: 'Smarter Slug Flow Conditioning and Control' * Co-inventor: 'Technique for Production Enhancement with Downhole Monitoring of Artificially Lifted Wells' * Co-inventor: 'Wellbore real-time monitoring and analysis of fracture contribution' Worldwide Experience in Training / Seminar / Workshop Deliveries: * Besides delivering several SPE webinars, ALRDC and SPE trainings globally, he has taught artificial lift at Texas Tech, Missouri S&T, Louisiana State, U of Southern California, and U of Houston. * He has conducted seminars, bespoke trainings / workshops globally for practicing professionals: * Companies: Basra Oil Company, ConocoPhillips, Chevron, EcoPetrol, Equinor, KOC, ONGC, LukOil, PDO, PDVSA, PEMEX, Petronas, Repsol, , Saudi Aramco, Shell, Sonatrech, QP, Tatneft, YPF, and others. * Countries: USA, Algeria, Argentina, Bahrain, Brazil, Canada, China, Croatia, Congo, Ghana, India, Indonesia, Iraq, Kazakhstan, Kenya, Kuwait, Libya, Malaysia, Oman, Mexico, Norway, Qatar, Romania, Russia, Serbia, Saudi Arabia, S Korea, Tanzania, Thailand, Tunisia, Turkmenistan, UAE, Ukraine, Uzbekistan, Venezuela. * Virtual training provided for PetroEdge, ALRDC, School of Mines, Repsol, UEP-Pakistan, and others since pandemic. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information post training support and fees applicable Accreditions And Affliations

Artificial Lift and Real-Time Production Optimization in Digital Oilfield
Delivered in-person, on-request, onlineDelivered Online & In-Person in Internationally
£3947 to £4590

Geomechanics at Well and Field Scale

By Asia Edge

ABOUT THIS TRAINING COURSE Geomechanical evaluations are about the assessment of deformations and failure in the subsurface due to oil & gas production, geothermal operations, CO2 storage and other operations. All geomechanical evaluations include four types of modelling assumptions, which will be systematically addressed in this training, namely: 1.      Geometrical modelling assumption: Impact of structural styles on initial stress and stress redistribution due to operations 2.      Formation (or constitutive) behaviour: Linear elastic and non-linear behaviour, associated models and their parameters, and methods how to constrain these using 3.      Initial stress: Relation with structural setting and methods to quantify the in-situ stress condition 4.      Loading conditions: Changes in pore pressure and temperature on wellbore and field scale This 5 full-day course starts with the determination of the stresses in the earth, the impact of different structural styles, salt bodies, faulting and folding on the orientation of the three main principal stress components. Different (field) data sources will be discussed to constrain their magnitude, while exercises will be made to gain hands-on experience. Subsequently, the concepts of stress and strain will be discussed, linear elasticity, total and effective stress and poro-elasticity in 1D, 2D and 3D, as well as thermal expansion. Participants will be able to construct and interpret a Mohr-circles. Also, different failure mechanisms and associated models (plastic, viscous) will be discussed. All these concepts apply on a material point level. Next, geomechanics on the wellbore scale is addressed, starting with the stress distribution around the wellbore (Kirsch equations). The impact of mudweight on shear and tensile failure (fracturing) will be calculated, and participants will be able to determine the mudweight window stable drilling operations, while considering well deviation and the use of oil-based and water-based muds (pore pressure penetration). Fracturing conditions and fracture propagation will be addressed. Field-scale geomechanics is addressed on the fourth day, focussing on building a 3D geomechanical model that is fit-for-purpose (focussing on the risks that need evaluation). Here, geological interpretation (layering), initial stress and formation property estimation (from petrophysical logs and lab experiments) as well as determining the loading conditions come together. The course is concluded with interpretation of the field-wide geomechanical response to reservoir depletion with special attention to reservoir compaction & subsidence, well failure and fault reactivation & induced seismicity. Special attention is paid to uncertainties and formulating advice that impacts decision-making during development and production stages of a project. This course can also be offered through Virtual Instructor Led Training (VILT) format. Training Objectives Upon completing of this course, the participants will be able to: * Identify potential project risks that may need a geomechanical evaluation * Construct a pressure-depth plot based on available field data (density logs, (X)LOT, FIT, RFT) * Employ log-based correlation function to estimate mechanical properties * Produce a simplified, but appropriate geometrical (layered, upscaled) model that honours contrasts in initial stress, formation properties and loading conditions, including * Construct and interpret a Mohr-circle for shear and tensile failure * Calculate the mud weight that leads to shear and tensile failure (fracturing conditions) * Identify potential lab experiments to measure required formation properties * Describe the workflow and data to develop a field-wide fit-for-purpose geomechanical model * Discuss the qualitative impact of pressure and temperature change on the risk related to compaction, well failure, top-seal integrity and fault reactivation Target Audience This course is intended for Drilling Engineers, Well Engineers, Production Technologists, Completion Engineers, Well Superintendents, Directional Drillers, Wellsite Supervisors and others, who wish to further their understanding of rock mechanics and its application to drilling and completion. There is no specific formal pre-requisite for this course. However, the participants are requested to have been exposed to drilling, completions and production operations in their positions and to have a recommended minimum of 3 years of field experience. Course Level * Intermediate Trainer Your expert course leader has over 30 years of experience in the Oil & Gas industry, covering all geomechanical issues in the petroleum industry for Shell. Some of his projects included doing research and providing operational advice in wellbore stability, sand failure prediction, and oil-shale retortion among others. He guided multi-disciplinary teams in compaction & subsidence, top-seal integrity, fault reactivation, induced-seismicity and containment. He was also involved in projects related to Carbon Capture Storage (CCS). He is the founding father of various innovations and assessment tools, and developed new insights into the root causes seismicity induced by Oil & Gas production. Furthermore, he was the regional coordinator for technology deployment in Africa, and Smart Fields (DOFF, iField) design advisor for Shell globally. He was responsible for the Geomechanical competence framework, and associated virtual and classroom training programme in Shell for the last 10 years. He served as one of the Subject Matter Expert (SME) on geomechanics, provided Technical Assurance to many risk assessments, and is a co-author of Shell's global minimun standard on top-seal integry and containment. He has a MSc and PhD in Civil Engineering and computational mechanics from Delft University of Technology, The Netherlands. Training experience: Developed and delivered the following (between 2010 and 2020): * The competence framework for the global geomechanical discipline in Shell * Online Geomechanical training programs for petroleum engineers (post-doc level) * The global minimum standard for top-seal integrity assessment in Shell * Over 50 learning nuggets with Subject Matter Experts * Various Shell virtual Geomechanical training courses covering all subjects * Developed Advanced Geomechanical training program for experienced staff in Shell * Coaching of KPC staff on Geomechanics and containment issues on an internship at Shell in The Netherlands, Q4 2014 * Lectured at the Utrecht University summer school (The Netherlands, 2020) on induced seismicity among renowned earthquake experts (Prof. Mark Zoback, Prof. Jean-Philippe Avouac, Prof. Jean-Pierre Ampuero and Prof. Torsten Dahm) (https://www.nwo.nl/onderzoeksprogrammas/deepnl/bijeenkomsten/6-10-juli-2020-deepnl-webinar-series-induced-seismicity) * Lectured at the Danish Technical University summer school (Copenhagen, 2021) summer school on Carbon Capture and Storage (https://www.oilgas.dtu.dk/english/Events/DHRTC-Summer-School) * Virtual Carbon Capture and Storage (CCS): Project Risks & How to Manage Them training course (October and November 2021) POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information post training support and fees applicable Accreditions And Affliations

Geomechanics at Well and Field Scale
Delivered in-person, on-request, onlineDelivered Online & In-Person in Internationally
£3697 to £4299

Data Analytics Workflows for Artificial Lift, Production and Facility Engineers

By Asia Edge

ABOUT THIS TRAINING COURSE Business Impact: The main aim is to provide insight and understanding of data analytics and machine learning principles through applications. Field data is used to explain data-analysis workflows. Using easy to follow solution scripts, the participants will assess and extract value from the data sets. Hands-on solution approach will give them confidence to try out applicable techniques on data from their field assets. Data analysis means cleaning, inspecting, transforming, and modeling data with the goal of discovering new, useful information and supporting decision-making. In this hands-on 2-day training course, the participants learn some data analysis and data science techniques and workflows applied to petroleum production (specifically artificial lift) while reviewing code and practicing. The focus is on developing data-driven models while keeping our feet closer to the underlying oil and gas production principles. Unique Features: * Eight business use cases covering their business impact, code walkthroughs for most all and solution approach. * Industry data sets for participants to practice on and take home. * No software or complicated Python frameworks required. Training Objectives After the completion of this training course, participants will be able to: * Understand digital oil field transformation and its impact on business * Examine machine learning methods * Review workflows and code implementations * After completing the course, participants will have a set of tools and some pathways to model and analyze their data in the cloud, find trends, and develop data-driven models Target Audience This training course is suitable and will greatly benefit the following specific groups: * Artificial lift, production and facilities engineers and students to enhance their knowledge base, increase technology awareness, and improve the facility with different data analysis techniques applied on large data sets Course Level * Intermediate * Advanced Training Methods The course discusses several business use-cases that are amenable to data-driven workflows. For each use case, the instructor will show the solution using a data analysis technique with Python code deployed in the Google cloud. Trainees will solve a problem and tweak their solution. Course Duration: 2 days in total (14 hours). Training Schedule 0830 - Registration 0900 - Start of training 1030 - Morning Break 1045 - Training recommences 1230 - Lunch Break 1330 - Training recommences 1515 - Evening break 1530 - Training recommences 1700 - End of Training The maximum number of participants allowed for this training course is 20. This course is also available through our Virtual Instructor Led Training (VILT) format. Prerequisites: * Understanding of petroleum production concepts * Knowledge of Python is not a must but preferred to get the full benefit. * The training will use the Google Collaboratory environment available in Google-Cloud for hands-on exercises * Trainees will need to bring a computer with a Google Chrome browser and a Google email account (available for free) Trainer Your expert course leader has over 35 years' work-experience in multiphase flow, artificial lift, real-time production optimization and software development/management. His current work is focused on a variety of use cases like failure prediction, virtual flow rate determination, wellhead integrity surveillance, corrosion, equipment maintenance, DTS/DAS interpretation. He has worked for national oil companies, majors, independents, and service providers globally. He has multiple patents and has delivered a multitude of industry presentations. Twice selected as an SPE distinguished lecturer, he also volunteers on SPE committees. He holds a Bachelor's and Master's in chemical engineering from the Gujarat University and IIT-Kanpur, India; and a Ph.D. in Petroleum Engineering from the University of Tulsa, USA. Highlighted Work Experience: * At Weatherford, consulted with clients as well as directed teams on digital oilfield solutions including LOWIS - a solution that was underneath the production operations of Chevron and Occidental Petroleum across the globe. * Worked with and consulted on equipment's like field controllers, VSDs, downhole permanent gauges, multiphase flow meters, fibre optics-based measurements. * Shepherded an enterprise-class solution that is being deployed at a major oil and gas producer for production management including artificial lift optimization using real time data and deep-learning data analytics. * Developed a workshop on digital oilfield approaches for production engineers. Patents: * Principal inventor: 'Smarter Slug Flow Conditioning and Control' * Co-inventor: 'Technique for Production Enhancement with Downhole Monitoring of Artificially Lifted Wells' * Co-inventor: 'Wellbore real-time monitoring and analysis of fracture contribution' Worldwide Experience in Training / Seminar / Workshop Deliveries: * Besides delivering several SPE webinars, ALRDC and SPE trainings globally, he has taught artificial lift at Texas Tech, Missouri S&T, Louisiana State, U of Southern California, and U of Houston. * He has conducted seminars, bespoke trainings / workshops globally for practicing professionals: * Companies: Basra Oil Company, ConocoPhillips, Chevron, EcoPetrol, Equinor, KOC, ONGC, LukOil, PDO, PDVSA, PEMEX, Petronas, Repsol, , Saudi Aramco, Shell, Sonatrech, QP, Tatneft, YPF, and others. * Countries: USA, Algeria, Argentina, Bahrain, Brazil, Canada, China, Croatia, Congo, Ghana, India, Indonesia, Iraq, Kazakhstan, Kenya, Kuwait, Libya, Malaysia, Oman, Mexico, Norway, Qatar, Romania, Russia, Serbia, Saudi Arabia, S Korea, Tanzania, Thailand, Tunisia, Turkmenistan, UAE, Ukraine, Uzbekistan, Venezuela. * Virtual training provided for PetroEdge, ALRDC, School of Mines, Repsol, UEP-Pakistan, and others since pandemic. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information post training support and fees applicable Accreditions And Affliations

Data Analytics Workflows for Artificial Lift, Production and Facility Engineers
Delivered in-person, on-request, onlineDelivered Online & In-Person in Internationally
£2132 to £2480

HPHT Planning and Well Control

By Asia Edge

ABOUT THIS TRAINING COURSE In our pursuit to discover oil & gas in deeper horizons, wells are often drilled in a HPHT environment. To be considered a HPHT well, the downhole conditions will have pressures in excess of 10,000 psi (69 MPa) and 300° F (150° C). To drill these usually expensive wells successfully, the planning and execution phase has to be of an exceptionally high standard. Therefore, both operator and drilling/service contractor staff must be seamlessly aligned and work as a coherent team to reach and then harness the well objectives. This is particularly important when speciality services such as Managed Pressure Drilling (MPD) are being applied with crews and/or supervisors who are not intricately familiar with complicated well control incidents. As we seek to prevent costly non-productive time, attention will also be paid to enabling technologies like expandable solid tubulars, mud coolers and specialty mud. The 3 full-day course will explain the key characteristics and challenges of HPHT Planning and Well Control. This includes: 1. Differences between HPHT and standard (conventional) wells and what this entails for well design. 2. The challenges unique to HPHT and the impact of Pore Pressure Prediction (PPP). 3. Static and Dynamic Equivalent Mud Density and the factors that influence the ultimate Bottom Hole Pressure (BHP). 4. Control practices such as 'fingerprinting' to identify what's happening downhole. 5. HPHT shut-in procedures and practices. 6. Specific HPHT equipment and drilling tool requirements and advantages of Managed Pressure Drilling (MPD). 7. Well control on/off bottom, bull-heading and dealing with kick-loss situations. 8. Mud management, tolerance on mud properties and challenges in cementing. 9. Case history on emergency control. 10. Drills, team effort, checklists, human factor and 'getting everybody on board'. Training Objectives By the end of this course, participants will be able to: * Recognize the main differences in planning/design between HPHT and standard (conventional) wells as well as the challenges that will have to be faced. * Explain drilling and tripping operational challenges and practices as well as how to manage these effectively. * Identify wellbore breathing (a.k.a. ballooning) and how to safely deal with this within the narrow window for mud density selection. * Apply practices of consistent fingerprinting and how to develop procedures for this to benefit the rig team. * Measure and understand bottom hole pressure and the effect of influencing factors such as temperature, rotation and flow rate. * Understand the critical mud properties to alleviate barite sag, general mud density control techniques and specify the essentials in cementing. * Manage losses and low fracture gradients with well bore strengthening methods. * Execute sound HPHT shut-in procedures. * Understand how MPD can assist in the safe and efficient drilling and hole cleaning of HPHT wells. * Understand the use of MPD Influx Management Envelopes. * Identify critical Early Kick Detection Systems (EKDS) and HPHT well control equipment. * Execute safe secondary well control practices in a H2S environment, bull-heading, on and off bottom and handling of gas at surface, using MGS and hydrate mitigation measures. Target Audience The course is intended for: * Office-based staff engaged in HPHT well planning and day-to-day operations * Field-based rig staff working as front-line supervisors - from Assistant Drillers to Senior Toolpushers * Field-based rig staff working for service companies supporting the execution of HPHT wells (MPD, mud and mudlogging services etc.) Trainer Your expert course leader has over 45 years of experience in the Oil & Gas industry. During that time, he has worked exclusively in the well engineering domain. After being employed in 1974 by Shell, one of the major oil & gas producing operators, he worked as an apprentice on drilling rigs in the Netherlands. After a year, he was sent for his first international assignment to the Sultanate of Oman where he climbed up the career ladder from Assistant Driller, to Driller, to wellsite Petroleum Engineer and eventually on-site Drilling Supervisor, actively engaged in the drilling of development and exploration wells in almost every corner of this vast desert area. At that time, drilling techniques were fairly basic and safety was just a buzz word, but such a situation propels learning and the fruits of 'doing-the-basics' are still reaped today when standing in front of a class. After some seven years in the Middle East, a series of other international assignments followed in places like the United Kingdom, Indonesia, Turkey, Denmark, China, Malaysia, and Russia. Apart from on-site drilling supervisory jobs on various types of drilling rigs (such as helicopter rigs) and working environments (such as jungle and artic), he was also assigned to research, to projects and to the company's learning centre. In research, he was responsible for promoting directional drilling and surveying and advised on the first horizontal wells being drilled, in projects, he was responsible for a high pressure drilling campaign in Nigeria while in the learning centre, he looked after the development of new engineers joining the company after graduating from university. He was also involved in international well control certification and served as chairman for a period of three years. In the last years of his active career, he worked again in China as a staff development manager, a position he nurtured because he was able to pass on his knowledge to a vast number of new employees once again. After retiring in 2015, he has delivered well engineering related courses in Australia, Indonesia, Brunei, Malaysia, China, South Korea, Thailand, India, Dubai, Qatar, Kuwait, The Netherlands, and the United States. The training he provides includes well control to obtain certification in drilling and well intervention, extended reach drilling, high pressure-high temperature drilling, stuck pipe prevention and a number of other ad-hoc courses. He thoroughly enjoys training and is keen to continue taking classes as an instructor for some time to come. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information post training support and fees applicable Accreditions And Affliations

HPHT Planning and Well Control
Delivered in-person, on-request, onlineDelivered Online & In-Person in Internationally
£2063 to £2399

Educators matching "Fracture"

Show all 5
Yoga360 & Meditation with Simon Hoten

yoga360 & meditation with simon hoten

London

Yoga360 with Simon Hoten (pronounced Yoga three sixty) creates yoga practices, classes, workshops and retreats. As the number 360 reflects the number of degrees in a full or whole circle, Yoga360 reflects a focus on the whole person.   Founder: Simon Hoten I have been practising & studying yoga since 2003 and teaching since 2010. As a yoga teacher I am British Wheel of Yoga accredited. I am also a qualified meditation teacher and certified iRest™ Teacher (iRest yoga nidra / Guided meditation) I started my personal meditation practise with a 10 day silent Vipassana meditation retreat in New Zealand in March 2003. Following this revelatory experience, I went to my first yoga class a few days later, with the primary intention of improving my flexibility so that I could sit more comfortably during meditation. However at my very first class I became intrigued about the physical yoga practise as well as meditation and this soon developed into the passion that it is today. My teaching style is one of emphasis on the breath, healthy alignment, flow of movement, building strength & flexibility, whilst also giving an opportunity for deep relaxation. I aim for all my classes to be open and friendly whilst also being focused. I am very keen in sharing the benefits of private / one on one teaching, having personally seen the depth in my own practise develop following such a setting. As a yoga teacher I come with 25 years of experience of a fast-paced, city working-life and all the pressures, expectations and challenges that this lifestyle brings. I have seen the positives that yoga can bring first hand including supporting improved focus and energy as well as helping alleviate symptoms of stress and supporting improved sleep patterns particularly after long periods of travelling. With a regular asana practise, I have also significantly benefited from improved posture, flexibility and movement in my body where there were restrictions, particularly following the effects of a severe femur fracture in my 20's and subsequent 12 month recovery period in hospital.