• Professional Development
  • Medicine & Nursing
  • Arts & Crafts
  • Health & Wellbeing
  • Personal Development

407 Grid courses in Liverpool delivered On Demand

CSS Bootcamp: Master CSS (Including CSS Grid/Flexbox)

By Packt

Work through real-world projects and learn how to create modern, responsive websites using CSS Grid and Flexbox

CSS Bootcamp: Master CSS (Including CSS Grid/Flexbox)
Delivered Online On Demand11 hours 30 minutes
£93.99

Practice CSS Grid Projects to Build Modern Real World Websites

By Packt

Learn all the CSS Grid concepts and create professional responsive website designs - multiple website layout projects.

Practice CSS Grid Projects to Build Modern Real World Websites
Delivered Online On Demand4 hours 16 minutes
£29.99

CE519: Off-grid System Considerations

By Solar Energy International (SEI)

Join SEI's Will White - who's been living off-grid since 2007 - for an in-depth look at off-grid system considerations in three parts: Components used in an off-grid system. Design parameters of an off-grid system. How to size individual components for an off-grid system and the maintenance required.

CE519: Off-grid System Considerations
Delivered Online On Demand
£75.57

Build Real-World Websites Using HTML5, CSS3, Flexbox, Grid, and Sass

By Packt

A complete step-by-step hands-on guide that will help you confidently design, code, validate, and launch websites online using HTML5, CSS3, Flexbox, Grid, and Sass from scratch. No coding or design experience is required. Start your web development journey today!

Build Real-World Websites Using HTML5, CSS3, Flexbox, Grid, and Sass
Delivered Online On Demand11 hours 58 minutes
£140.99

PV201L: Solar Training - Solar Electric Lab Week (Grid-Direct)

By Solar Energy International (SEI)

Students who complete the PV201L workshop will be able to: Perform power and energy calculations Obtain and apply specifications for PV modules and determine their performance given various environmental and operating conditions Safely operate various types of digital multimeters Diagram and determine the power, current, and voltage characteristics of PV modules in different series and parallel configurations Install various mounting systems (ground, pole, roof, and trackers). Decipher balance-of-system equipment specification sheets to determine the critical information needed for system design Install a residential grid-direct system including the array, inverter, circuit conductors, and overcurrent protection Safely operate equipment grounding, system grounding, and components and conductors used for grounding Work with wires and components on schematics of residential grid-direct systems: disconnects, inverter, equipment grounding conductors, ungrounded conductors, grounded conductors, the grounding electrode(s), and the AC and DC system grounds Identify potential safety hazards and demonstrate the proper use of personal protective equipment for working on grid-direct PV systems List the order of installation, commissioning, and decommissioning of a grid-direct PV system Note: This class is a great complement to PV301L, the Solar Electric Lab Week (Battery-Based).

PV201L: Solar Training - Solar Electric Lab Week (Grid-Direct)
Delivered Online On Demand
£1,255.73

PV201LW: Solar Training - Women's Solar Electric Lab Week (Grid-Direct)

By Solar Energy International (SEI)

Students who complete the PV201L workshop will be able to: Perform power and energy calculations Obtain and apply specifications for PV modules and determine their performance given various environmental and operating conditions Safely operate various types of digital multimeters Diagram and determine the power, current, and voltage characteristics of PV modules in different series and parallel configurations Install various mounting systems (ground, pole, roof, and trackers). Decipher balance-of-system equipment specification sheets to determine the critical information needed for system design Install a residential grid-direct system including the array, inverter, circuit conductors, and overcurrent protection Safely operate equipment grounding, system grounding, and components and conductors used for grounding Work with wires and components on schematics of residential grid-direct systems: disconnects, inverter, equipment grounding conductors, ungrounded conductors, grounded conductors, the grounding electrode(s), and the AC and DC system grounds Identify potential safety hazards and demonstrate the proper use of personal protective equipment for working on grid-direct PV systems List the order of installation, commissioning, and decommissioning of a grid-direct PV system Note: This class is a great complement to PV301L, the Solar Electric Lab Week (Battery-Based). This Women's Solar Electric Lab Week is powered by:

PV201LW: Solar Training - Women's Solar Electric Lab Week (Grid-Direct)
Delivered Online On Demand
£1,255.73

PV202: Solar Training - Advanced PV System Design and the NEC (Grid-Direct)

By Solar Energy International (SEI)

Students who complete PV202 will be able to: Define the purpose of the National Electrical Code (NEC®) and NEC® terminology for PV equipment Determine procedures for proper installation of equipment and conductors, including minimum requirements for working space Examine methods for PV wire management and determine where expansion fittings are required Describe and identify electrical services, including split-phase and three-phase Wye (Y) and Delta (∆) Evaluate electrical service details to collect and record during solar site evaluation Identify options for NEC®-compliant PV system interconnection to the utility grid and determine whether a supply side, load side, or additional service connection is appropriate Identify code-compliant methods for connecting an inverter to an existing AC feeder Calculate PV module voltage based on temperature to ensure compatibility with system components and NEC® Section 690.7, and explore other options for maximum PV system DC voltage calculations Identify NEC® requirements and sizing of disconnects and overcurrent protection devices (OCPDs) in grid-direct PV systems Define inverter grounding configurations Evaluate inverter choices and system configurations, including string inverters, central inverters, and module level power electronics (MLPE) Identify requirements for equipment grounding, equipment grounding conductors (EGC), and grounding electrode conductors (GEC), and size the conductors according to the NEC® Identify common causes of ground-faults and arc-faults Describe ground-fault and arc-fault protection devices Describe benefits and appropriate locations of surge protection devices (SPD) Demonstrate the use of sun charts and perform calculations to determine row spacing and minimize inter-row shading Identify how Codes detailing access for first responders impact PV array roof layout Examine fire classifications that affect racking and module selection Detail NEC rapid shutdown requirements and options for implementation Identify load and structural considerations for low- and steep-slope roof-mounted PV systems Calculate wind uplift force and select appropriate lag bolts Review issues related to planning, design, and installation of ground-mount PV arrays Review PV system circuit terminology, definitions, and conductor types Calculate minimum overcurrent protection device (OCPD) size and conductor ampacity using appropriate adjustment and correction factors Calculate voltage drop and verify system operation within acceptable limits Examine requirements for PV system labeling Calculate the maximum and minimum number of modules per PV source circuit, and number of PV source circuits per inverter Determine size of residential grid-direct PV system based on site and customer-specific considerations including the number and wiring layout of modules, conductor and OCPD sizes, and the AC interconnections Determine the size of a large, multiple inverter, grid-direct PV system based on site and customer-specific considerations, including the quantity and layout of modules and inverters and the AC interconnection Define large-scale PV and review associated NEC® allowances and requirements Describe importance of Data Acquisition Systems (DAS) Identify common DAS equipment and hardware Review DAS design, installation, and commissioning processes and common problems associated with DAS Show how reports can be generated and utilized to remotely assess health of system

PV202: Solar Training - Advanced PV System Design and the NEC (Grid-Direct)
Delivered Online On Demand
£759.54

PVOL202: Solar Training - Advanced PV System Design and the NEC (Grid-Direct) - Online

By Solar Energy International (SEI)

Students who complete PVOL202 will be able to: Define the purpose of the National Electrical Code (NEC®) and NEC® terminology for PV equipment Determine procedures for proper installation of equipment and conductors, including minimum requirements for working space Examine methods for PV wire management and determine where expansion fittings are required Describe and identify electrical services, including split-phase and three-phase Wye (Y) and Delta (∆) Evaluate electrical service details to collect and record during solar site evaluation Identify options for NEC®-compliant PV system interconnection to the utility grid and determine whether a supply side, load side, or additional service connection is appropriate Identify code-compliant methods for connecting an inverter to an existing AC feeder Calculate PV module voltage based on temperature to ensure compatibility with system components and NEC® Section 690.7, and explore other options for maximum PV system DC voltage calculations Identify NEC® requirements and sizing of disconnects and overcurrent protection devices (OCPDs) in grid-direct PV systems Define inverter grounding configurations Evaluate inverter choices and system configurations, including string inverters, central inverters, and module level power electronics (MLPE) Identify requirements for equipment grounding, equipment grounding conductors (EGC), and grounding electrode conductors (GEC), and size the conductors according to the NEC® Identify common causes of ground-faults and arc-faults Describe ground-fault and arc-fault protection devices Describe benefits and appropriate locations of surge protection devices (SPD) Demonstrate the use of sun charts and perform calculations to determine row spacing and minimize inter-row shading Identify how Codes detailing access for first responders impact PV array roof layout Examine fire classifications that affect racking and module selection Detail NEC rapid shutdown requirements and options for implementation Identify load and structural considerations for low- and steep-slope roof-mounted PV systems Calculate wind uplift force and select appropriate lag bolts Review issues related to planning, design, and installation of ground-mount PV arrays Review PV system circuit terminology, definitions, and conductor types Calculate minimum overcurrent protection device (OCPD) size and conductor ampacity using appropriate adjustment and correction factors Calculate voltage drop and verify system operation within acceptable limits Examine requirements for PV system labeling Calculate the maximum and minimum number of modules per PV source circuit, and number of PV source circuits per inverter Determine size of residential grid-direct PV system based on site and customer-specific considerations including the number and wiring layout of modules, conductor and OCPD sizes, and the AC interconnections Determine the size of a large, multiple inverter, grid-direct PV system based on site and customer-specific considerations, including the quantity and layout of modules and inverters and the AC interconnection Define large-scale PV and review associated NEC® allowances and requirements Describe importance of Data Acquisition Systems (DAS) Identify common DAS equipment and hardware Review DAS design, installation, and commissioning processes and common problems associated with DAS Show how reports can be generated and utilized to remotely assess health of system

PVOL202: Solar Training - Advanced PV System Design and the NEC (Grid-Direct) - Online
Delivered Online On Demand
£683.21

GRID Solar Energy Diploma

4.7(160)

By Janets

Discover the future of renewable energy with our comprehensive GRID Solar Energy Diploma. Gain expertise in solar technology, installation, and maintenance, empowering yourself for a sustainable career in the thriving solar energy sector. Enroll today and harness the power of the sun for a brighter tomorrow!

GRID Solar Energy Diploma
Delivered Online On Demand2 hours
£25

Bidirectional Charging (Vehicle-to-Grid / V2G)

By Cenex (Centre of Excellence for Low Carbon & Fuel Cell Technologies)

Join us for a masterclass in bi-directional charging for electric vehicles. Otherwise known as Vehicle-to-Grid (V2G) or Vehicle-to-Anything (V2X), and learn about this potentially game-changing technology which brings together the transport and energy systems.

Bidirectional Charging (Vehicle-to-Grid / V2G)
Delivered Online On Demand3 hours
£299