This course will provide all staff with an awareness of food hygiene. It also covers the recommended yearly refresher in Food Hygiene.
This is a full day session that will aim to provide a more in-depth understanding of Food Hygiene. It meets UK and EU legal requirements for food handlers & matches RSPH and CIEH level 2 syllabus
If your organisation manages contractors then your staff need to understand the health and safety issues. This course is the answer. The expert trainer will set out clearly the legal responsibilities of all relevant parties and explore the practical application of these responsibilities with the course participants. The course will then examine the issues associated with the planning of work to be contracted out and the evaluation, selection, control and monitoring of contractors engaged to undertake the work. Although the main focus is on health and safety, the course will also explain how health and safety issues need to be integrated into your organisation's functional management processes to ensure effective control of contractors. The course will consider all types of contracted activities, including construction and maintenance, cleaning, security, plant installation, etc. This programme will give participants: A clear understanding of the organisation's legal responsibilities for managing contractors The information they need to assess the competence of contractors A practical understanding of risk assessment principles and the transfer of risk to contractors A step-by-step guide to the key aspects of managing contractors in practice, covering:Planning of the workSelecting contractorsHandover prior to work commencementDuring the workReviewing the work on completion Practical guidance on the integration of health and safety controls into organisational procedures for contractor management 1 Introduction Who are contractors? Why manage contractors? Different types of contractors Costs of poor contractor performance 2 Overview of health and safety law and liability Health and safety law and statutory duties Relevance of civil and criminal law Enforcement and prosecution 3 Relevant legislation for controlling contractors Health and Safety at Work Act 1974 Management of Health and Safety at Work Regulations 1999 Construction (Design and Management) Regulations 1994 (as amended, 2007) Other relevant legislation Contract law 4 Managing contractors in practice Exercise - how well is it happening? The objectives Five step approachPlanning of the workSelecting contractorsHandover prior to work commencementDuring the workReviewing the work on completion 5 Planning the work Scope and extent Risk assessment Interface and other activities Who controls what? Contract arrangements 6 Selecting the right contractor(s) Locating contractor organisations Selection the right contractors Assessing contractor competence Approved lists/frameworks Tender process 7 Pre-work commencement Co-ordination and co-operation Exchange of information Contractor risk assessments and method statements Permits to work Case study exercise 8 During contract work Communication and liaison Supervision and inspection of the work Inspection and reporting procedures Security issues Facilities and access 9 Reviewing work on completion Why, what and how? Achieving continuous improvement in contractor performance 10 Questions, discussion and review
About this Course This 5 full-day course provides a comprehensive understanding of all the commissioning procedures for combined cycle power plants. The Commissioning Management System (CMS) of combined cycle power plants is covered in detail in this course. This includes all the commissioning procedures and documents, purpose of commissioning, responsibilities, system description, organization, working parties, test teams, documentation, testing and commissioning schedules, test reports, safety, plant certification, and plant completion report. The course provides also a thorough understanding of all the commissioning requirements for gas turbines, steam turbines and auxiliaries, generator and auxiliaries, electrical equipment, switchgear equipment, switchgear and transformers. All the stages of the commissioning procedure are covered in-depth in this course. This includes preparation - planning various activities, pre-commissioning checks and tests, typical commissioning schedule, detailed tests and commissioning procedures and instructions for every component in a combined cycle power plant, instrumentation, trial run of the equipment, safety and precautions, commissioning of combined cycle power plant systems, safety rules clearance certificates, procedure for the control and handling of defects, commissioning reports, operational testing, first fire, generator synchronization, performance testing, heat rate testing, emission testing, contract testing, CO2 concentration tests, electrical full-load rejection test, duct burner testing, partial load stability test, and reliability test. This course is a MUST for anyone who is involved in the pre-commissioning or commissioning of any combined cycle power plant equipment because it provides detailed pre-commissioning checks and tests, and detailed tests and commissioning procedures and instructions for every component in a combined cycle power plant. In addition, the seminar provides an in-depth coverage of all preparation, planning activities, commissioning schedules, trial run of each combined cycle power plant equipment, safety and precautions, safety rules clearance certificates, procedures for handling defects, and commissioning reports. Training Objectives Pre-commissioning Checks and Tests, Detailed Tests and Commissioning Procedures and Instructions for Every Equipment in Combined Cycle Power Plants: Gain a thorough understanding of all pre-commissioning checks and tests, and all commissioning procedures and instructions for every equipment in combined cycle power plants Commissioning Management System (CMS) of Combined Cycle Power Plants: Discover the benefits of the CMS of combined cycle power plants including all commissioning procedures and documents, purpose of commissioning, responsibilities, system description, organization, working parties, test teams, documentation, testing and commissioning schedules, test reports, safety, plant certification, and plant completion report Commissioning Procedures and Instructions for Heat Recovery Steam Generators, Air Blow and Steam Blow of Steam and Gas Piping in Combined Cycle Power Plants: Learn about the commissioning procedures and instructions for heat recovery steam generators, chemical cleaning of heat recovery steam generators, air blow and gas blow of steam and gas piping in combined cycle power plants, safety valve setting and soot blowers Commissioning Procedures and Instructions for Gas Turbines and Steam Turbines: Gain a thorough understanding of all the commissioning procedures and instructions for gas and steam turbines and auxiliaries including acid cleaning of oil pipelines, lubrication and governing system (oil flushing and hydraulic testing), jacking oil system, governing system, regenerative system, barring gear, vacuum tightness test, first rolling of turbine and data logging Commissioning Procedures and Instructions for Generator and Auxiliaries: Discover all the commissioning procedures and instructions for generator and auxiliaries including generator, seal oil system, hydrogen gas system, stator water system, rolling and start-up of generators Commissioning Procedures and Instructions for Electrical Equipment: Learn about all the commissioning procedures and instructions for electrical equipment including switchyard equipment, switchgear, transformers and motors Operational Testing, Performance Testing, Heat Rate Testing, Emission Testing of Combine Cycle Power Plants: Gain a thorough understanding of operational testing, first fire, generator synchronization, performance testing, heat rate testing, emission testing, contract testing, CO2 concentration tests, electrical full-load rejection test, duct burner testing, partial load stability test, and reliability test of combined cycle power plants Target Audience Engineers of all disciplines Managers Technicians Maintenance personnel Other technical individuals Training Methods The instructor relies on a highly interactive training method to enhance the learning process. This method ensures that all the delegates gain a complete understanding of all the topics covered. The training environment is highly stimulating, challenging, and effective because the participants will learn by case studies which will allow them to apply the material taught to their own organization. Trainer Your specialist course leader has more than 32 years of practical engineering experience with Ontario Power Generation (OPG), one of the largest electric utility in North America. He was previously involved in research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories. While working at OPG, he acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time, he worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment. Later, he worked as the manager of a section dedicated to providing training for the staff at the power stations. The training provided by him covered in detail the various equipment and systems used in power stations. In addition, he has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. He has been consistently ranked as 'Excellent' or 'Very Good' by the delegates who attended his seminars and lectures. He written 5 books for working engineers from which 3 have been published by McGraw-Hill, New York. Below is a list of the books authored by him; Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011. Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003. Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012. Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999). Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999). Furthermore, he has received the following awards: The first 'Excellence in Teaching' award offered by PowerEdge, Singapore, in December 2016 The first 'Excellence in Teaching' award offered by the Professional Development Center at University of Toronto (May, 1996). The 'Excellence in Teaching Award' in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East). Awarded graduation 'With Distinction' from Dalhousie University when completed Bachelor of Engineering degree (1983). Lastly, he was awarded his Bachelor of Engineering Degree 'with distinction' from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information post training support and fees applicable Accreditions And Affliations
This course starts with the basics then moves seamlessly to an intermediate level. It includes a comprehensive yet balanced look at the four main components that make up Power BI Desktop: Report view, Data view, Model view, and the Power Query Editor. It also demonstrates how to use the online Power BI service. It looks at authoring tools that enables you to connect to and transform data from a variety of sources, allowing you to produce dynamic reports using a library of visualisations. Once you have those reports, the course looks at the seamless process of sharing those with your colleagues by publishing to the online Power BI service. The aim of this course is to provide a strong understanding of the Power BI analysis process, by working with real-world examples that will equip you with the necessary skills to start applying your knowledge straight away. 1 Getting started The Power BI process Launching Power BI Desktop The four views of Power BI Dashboard visuals 2 Connecting to files Connect to data sources Connect to an Excel file Connect to a CSV file Connect to a database Import vs. DirectQuery Connect to a web source Create a data table 3 Transforming data The process of cleaning data Column data types Remove rows with filters Add a custom column Append data to a table Fix error issues Basic maths operations 4 Build a data model Table relationships Manage table relationships 5 Merge queries Table join kinds Merging tables 6 Create report visualisations Creating map visuals Formatting maps Creating chart visuals Formatting chart Tables, matrixes, and cards Control formatting with themes Filter reports with slicers Reports for mobile devices Custom online visuals Export report data to Excel 7 The power query editor Fill data up and down Split columns by delimiter Add conditional columns Merging columns 8 The M formula Creating M functions Create an IF function Create a query group 9 Pivot and unpivot tables Pivot tables in the query editor Pivot and append tables Pivot but don't summarise Unpivot tables Append mismatched headers 10 Data modelling revisited Data model relationships Mark a calendar as a date table 11 Introduction to calculated columns New columns vs. measures Creating a new column calculation The SWITCH function 12 Introduction to DAX measures Common measure categories The SUM measure Adding measures to visuals COUNTROWS and DISINCTCOUNT functions DAX rules 13 The CALCULATE measure The syntax of CALCULATE Things of note about CALCULATE 14 The SUMX measure The SUMX measure X iterator functions Anatomy of SUMX 15 Introduction to time intelligence Importance of a calendar table A special lookup table The TOTALYTD measure Change year end in TOTALYTD 16 Hierarchy, groups and formatting Create a hierarchy to drill data Compare data in groups Add conditional formatting 17 Share reports on the web Publish to the BI online service Get quick insights Upload reports from BI service Exporting report data What is Q&A? Sharing your reports 18 Apply your learning Post training recap lesson
Level 2 Food Safety and Hygiene in Catering Course
Abrasive Wheels Training Nearly half of the workplace accidents involving abrasive wheels are due to an unsafe work system or operator error. This indicates that many of these incidents can be avoided if the risks of working with abrasive wheels are clearly communicated, and the correct safety measures are adopted, Abrasive Wheels Training will eliminate most accidents with Abrasive Wheels. With the appropriate Abrasive wheels training in place, you could significantly reduce the risk of an injury such as friction burns, crushed fingers and loss of eyesight which are the most common amongst abrasive wheel operators with the misuse of machines. This Abrasive Wheels Training Course is designed to assist in reducing the risk of injury for anyone who uses abrasive wheels at work. It guides you through the different types of abrasive wheels, how to identify and store them, how they should be used safely, and how they should be inspected prior to use. Our Abrasive Wheels Training will give all candidates hands-on practical training. Book with Confidence at Vally Plant Training At Vally Plant Training, we guarantee unbeatable value with our Price Match Promise. When you choose us, you can book with confidence, knowing that we will not be beaten on price. If you find a lower price for the same NPORS Experienced Worker Test, we’ll match it—ensuring you receive top-quality training at the best possible rate. Your skills, our commitment—always at the best price. Abrasive Wheels Course Duration 3-4 Hours Petrol Cut Off Saw 1 Day for all candidates Certification NPORS Traditional card – lasts for 5 years and is mainly accepted with housebuilders, utilities, port and marine as proof of competence OR NPORS card with CSCS logo – accepted by all major building contractor’s. The initial card is the RED trained operator card which lasts for 2 years and can be upgraded to BLUE competent operator card further to completion of relevant NVQ. In house certificates: suitable as proof of operator competence accepted for insurance and HSE compliance. Introduction to Abrasive Wheels Definition of Abrasive Wheels Abrasive wheels are tools used for cutting, grinding, and polishing various materials. They are made from abrasive particles, like grit, bonded together to form a solid wheel. When these wheels spin at high speeds, they can shape or finish different surfaces effectively. Types of Abrasive Wheels Commonly Used in Industry Bonded Abrasive Wheels: These are made by combining abrasive particles with a bonding material to form a solid wheel. Bonded abrasive wheels are typically used for tasks like grinding, cutting, and finishing metal or stone. Coated Abrasive Wheels: These have an abrasive layer attached to a backing material, like paper or cloth. Coated abrasive wheels are commonly used for sanding and smoothing surfaces, often in woodworking or metalworking. Abrasive wheel training is essential for learning how to use these tools safely and effectively. Understanding the different types of abrasive wheels and their applications can help you choose the right wheel for your job, ensuring efficiency and safety. Importance of Proper Training Overview of the Risks Associated with Improper Use Using abrasive wheels without proper training can be very dangerous. The importance of proper training cannot be overstated when it comes to the safe and effective use of abrasive wheels. Improper use of abrasive wheels can lead to serious accidents, such as wheel breakage, which can cause flying debris and severe injuries. Other risks include cuts, burns, and eye injuries from sparks or fragments. Not knowing how to handle the equipment properly can also result in damaged materials and inefficient work, leading to wasted time and resources. Benefits of Trained Versus Untrained Usage Undergoing abrasive wheel training is crucial for several reasons: Safety: Trained individuals know how to handle abrasive wheels safely, reducing the risk of accidents and injuries. They learn to inspect the wheels for damage, choose the right type of wheel for the job, and use protective gear correctly. Efficiency: Training ensures that users understand how to use abrasive wheels effectively, leading to faster and more accurate work. Trained users can achieve better results with less effort and time. Cost-Effectiveness: Proper training helps prevent damage to the wheels and the materials being worked on, saving money on replacements and repairs. It also minimizes downtime due to accidents or improper usage. Compliance: Many industries require certification for using abrasive wheels. Completing abrasive wheel training ensures compliance with safety regulations and industry standards, which is essential for legal and insurance purposes. In summary, abrasive wheel training equips users with the knowledge and skills needed to use abrasive wheels safely and efficiently, making the workplace safer and more productive. Getting Started with Abrasive Wheels Essential Equipment and Setup Before using abrasive wheels, it’s important to have the right equipment and ensure everything is set up properly. Here’s what you need: Protective Gear: Always wear safety goggles, gloves, ear protection, and a dust mask to protect yourself from flying debris, noise, and dust. Abrasive Wheels: Have a selection of abrasive wheels suitable for the tasks you plan to perform. This includes grinding wheels, cutting wheels, and sanding discs. Mounting Equipment: Ensure you have the correct flanges, spacers, and mounting hardware to secure the wheel to the machine properly. Tools and Machines: Use the appropriate tools and machines for your abrasive wheels, such as grinders, sanders, or cut-off saws. Make sure these machines are in good working condition. Work Area: Set up your work area with adequate lighting, ventilation, and space to move around safely. Ensure there are no flammable materials nearby. Completing an abrasive wheels training course will guide you on how to properly set up and use this equipment. Selecting the Right Wheel for the Job Choosing the right abrasive wheel is crucial for getting the job done efficiently and safely. Here’s how to select the right wheel: Material to Be Worked On: Different materials require different types of wheels. For example, use a grinding wheel for metal and a sanding disc for wood. Wheel Specification: Check the specifications of the wheel, including its grit size, bonding material, and hardness. Finer grits are better for finishing, while coarser grits are used for rough grinding. Machine Compatibility: Ensure the wheel is compatible with your machine. Check the wheel’s size, speed rating, and mounting requirements. Type of Task: Match the wheel to the task. Use cutting wheels for cutting, grinding wheels for grinding, and polishing wheels for finishing tasks. Enrolling in a grinding wheel training course can provide detailed guidance on selecting and using the right wheels for different jobs. Proper selection and setup not only improve efficiency but also enhance safety and prolong the life of the abrasive wheels. Safe Operation Techniques Step-by-Step Guide on How to Operate Abrasive Wheels Safely Inspect the Wheel: Before using any abrasive wheel, inspect it for cracks, chips, or other damage. Do not use a damaged wheel. Mount the Wheel Properly: Ensure the wheel is properly mounted on the machine. Follow the manufacturer’s instructions for correct mounting and balancing. Check Machine Guards: Make sure all safety guards are in place and functioning correctly. Guards help protect you from flying debris and accidental contact with the wheel. Wear Protective Gear: Always wear safety goggles, gloves, ear protection, and a dust mask to protect against sparks, noise, and dust. Start the Machine Safely: Stand to the side of the machine when starting it, not directly in front of the wheel. Allow the wheel to reach full speed before using it. Use Proper Technique: Apply light, even pressure to the workpiece. Avoid forcing the wheel or using excessive pressure, as this can cause the wheel to break. Maintain Control: Keep a firm grip on the tool or workpiece to prevent it from slipping or catching. Avoid Overheating: Use intermittent cuts and allow the wheel to cool down to avoid overheating, which can weaken the wheel and cause it to break. Regular Breaks: Take regular breaks to avoid fatigue, which can lead to mistakes and accidents. Completing an abrasive wheel training course can provide practical demonstrations of these safety techniques. Comparison with Other Cutting Methods Feature Abrasive Wheels Saws (Circular/Band) Laser Cutters Versatility High: Can cut metals, stone, ceramics. Moderate: Best for wood and certain metals. High: Can cut metals, plastics, composites. Precision High: Provides precise cuts and finishes. Moderate: Effective for straight cuts, less precise for intricate designs. Very High: Capable of intricate designs and clean cuts. Cost Low: Generally cheaper initial and maintenance costs. Moderate: Higher initial cost than abrasive wheels but longer lifespan. High: Expensive initial investment and maintenance costs. Portability High: Many tools are portable for on-site cutting and grinding. Low: Often require stationary setups. Low: Typically not portable and integrated into fixed setups. Safety Risks High: Requires proper training to prevent accidents (e.g., HSE, OSHA). Moderate: High-speed blades can be dangerous, need safety measures. Moderate: Requires specialized training to handle safety risks (e.g., reflective materials). Dust/Debris High: Generates significant dust and debris. Low: Produces less dust and debris. Very Low: Minimal dust and debris, cleaner cutting process. Wear and Tear High: Abrasive wheels wear down with use and need regular replacement. Low: Blades have a longer lifespan, less frequent replacement needed. Low: Lasers do not wear down, but components may need maintenance. Training Availability High: Numerous training courses available (e.g., HSE, OSHA). Moderate: Training available but not as comprehensive as abrasive wheel training. High: Specialized training required for safe operation and maintenance. Compliance High: Training helps meet regulatory requirements (e.g., PUWER 1998). Moderate: Safety training helps meet general safety regulations. High: Requires adherence to safety standards and protocols. Operational Speed Moderate: Suitable for detailed work, not as fast as saws for straight cuts. High: Faster cutting speeds for straight cuts. Moderate: Speed depends on material and thickness, generally slower than saws for thicker materials. Common Mistakes and How to Avoid Them Using a Damaged Wheel: Mistake: Using an abrasive wheel with cracks or chips. Solution: Always inspect the wheel before use and replace damaged wheels immediately. Improper Mounting: Mistake: Incorrectly mounting the wheel, leading to imbalance and breakage. Solution: Follow the manufacturer’s instructions and ensure the wheel is securely mounted. Skipping Protective Gear: Mistake: Not wearing safety gear, increasing the risk of injury. Solution: Always wear the recommended protective equipment, including goggles, gloves, and ear protection. Excessive Pressure: Mistake: Applying too much pressure, which can cause the wheel to break. Solution: Use light, even pressure and let the wheel do the work. Incorrect Wheel for the Job: Mistake: Using the wrong type of wheel for the material or task. Solution: Select the appropriate wheel based on the material and the task. Refer to the specifications and guidelines provided during abrasive wheels training. By understanding and avoiding these common mistakes, you can ensure safer and more efficient use of abrasive wheels. Proper training, like an abrasive wheel course, is essential to master these techniques and avoid potential hazards. Maintenance and Care Tips for Maintaining Abrasive Wheels Regular Cleaning: Clean the abrasive wheels regularly to remove any debris or buildup. Use a brush or compressed air to clean the wheel, ensuring it remains effective and prevents clogging. Proper Storage: Store abrasive wheels in a dry, cool place to prevent moisture damage. Keep them on a flat surface or in a vertical position to avoid warping or deformation. Wheel Dressing: Dress the wheel regularly using a wheel dresser to maintain its shape and expose fresh abrasive particles. This helps keep the wheel sharp and efficient. Avoid Overloading: Do not overload the wheel by forcing it to cut or grind faster than its capacity. Overloading can cause excessive wear and reduce the wheel’s lifespan. Use Correct Speed: Always operate the wheel at the recommended speed. Check the maximum speed rating of the wheel and ensure your machine does not exceed this limit. Balanced Use: Use the entire surface of the wheel evenly to prevent uneven wear. Avoid focusing on one spot for too long, which can create grooves and weaken the wheel. Lubrication: If applicable, use the appropriate lubricant to reduce friction and heat buildup. This can extend the life of the wheel and improve performance. How to Check for Wear and Damage Visual Inspection: Before each use, visually inspect the wheel for cracks, chips, or other damage. A damaged wheel can be dangerous and should be replaced immediately. Sound Test: Perform a sound test by gently tapping the wheel with a non-metallic object (like a wooden handle). A clear ringing sound indicates the wheel is intact, while a dull sound suggests it may be cracked and unsafe to use. Check for Unusual Vibrations: When the wheel is running, check for unusual vibrations or wobbling. This can indicate imbalance or damage. Stop using the wheel if you notice these signs and inspect it further. Measure Wheel Wear: Measure the diameter of the wheel regularly to monitor wear. Replace the wheel when it reaches the minimum usable diameter specified by the manufacturer. Surface Condition: Examine the surface of the wheel for glazing or loading. A glazed wheel appears shiny and smooth, indicating it is worn out and needs dressing or replacement. A loaded wheel is clogged with material and may require cleaning or dressing. Mounting Hardware: Check the flanges, spacers, and other mounting hardware for wear or damage. Ensure they are secure and in good condition to maintain proper wheel alignment. Regular maintenance and careful inspection of abrasive wheels can significantly extend their lifespan and ensure safe, efficient operation. Abrasive wheels training provides detailed guidelines on maintaining and checking wheels for wear and damage, helping users develop good maintenance habits. Health and Safety Guidelines Detailed Safety Precautions and Protective Gear Wear Appropriate Protective Gear: Safety Goggles or Face Shield: Protect your eyes and face from flying debris and sparks. Gloves: Wear sturdy gloves to protect your hands from sharp edges and hot materials. Ear Protection: Use earplugs or earmuffs to protect your hearing from the noise produced by grinding operations. Dust Mask or Respirator: Prevent inhalation of dust and particles, especially when working with materials that produce harmful dust. Apron or Protective Clothing: Wear a durable apron or long-sleeved clothing to shield your body from sparks and debris. Machine Safety Checks: Guarding: Ensure all machine guards are in place and secure before operation. Speed Check: Confirm that the machine’s speed does not exceed the wheel’s maximum rated speed. Work Area: Keep the work area clean and free of clutter to prevent tripping hazards. Safe Operation Practices: Proper Setup: Mount the abrasive wheel correctly, following the manufacturer’s instructions. Ensure it is balanced and secure. Correct Usage: Use the abrasive wheel only for its intended purpose. Avoid side grinding unless the wheel is specifically designed for it. Pressure Application: Apply light, even pressure to avoid overloading the wheel and causing it to break. Regular Inspections: Pre-Use Inspection: Check the wheel for any cracks, chips, or signs of wear before each use. During Use: Monitor the wheel for unusual vibrations or noises, and stop the machine immediately if any issues arise. What to Do in Case of an Accident Immediate Response: Stop the Machine: Turn off the machine immediately to prevent further injury. First Aid: Administer first aid for minor injuries. This may include cleaning cuts, applying bandages, and using cold compresses for burns or abrasions. Seek Medical Help: For serious injuries, seek professional medical assistance immediately. Call emergency services if necessary. Report the Incident: Inform Supervisors: Report the accident to your supervisor or safety officer. Provide details about how the incident occurred and the extent of the injuries. Document the Incident: Fill out an accident report form, including information about the equipment used, the nature of the injury, and any contributing factors. Review and Improve Safety Practices: Incident Analysis: Analyze the accident to determine its cause. Review whether safety protocols were followed and identify any gaps in training or equipment maintenance. Safety Training: Consider additional abrasive wheels training or a refresher course to reinforce safe practices and prevent future accidents. Online courses can be a convenient way to update your knowledge. Preventive Measures: Review Procedures: Ensure that all safety procedures are up-to-date and that all employees are familiar with them. Safety Drills: Conduct regular safety drills to prepare for potential accidents and improve response times. Legal Requirements and Certifications Overview of Relevant Laws and Regulations Using abrasive wheels involves adhering to specific safety laws and regulations to ensure the safety and health of workers. Here’s an overview of the key legal requirements: Occupational Safety and Health Administration (OSHA): In the United States, OSHA sets standards for the safe use of abrasive wheels. Employers must comply with OSHA regulations, including proper machine guarding, employee training, and the use of personal protective equipment (PPE). Provision and Use of Work Equipment Regulations (PUWER): In the UK, PUWER requires that work equipment, including abrasive wheels, is suitable for its intended use, properly maintained, and only operated by trained personnel. European Safety Standards: In Europe, EN 12413 is the standard for bonded abrasive products. It sets out requirements for safety, marking, and product testing to ensure the safe use of abrasive wheels. Regular Inspections and Maintenance: Laws often require regular inspections and maintenance of abrasive wheels and related machinery to ensure they remain in safe working condition. Record Keeping: Employers must keep records of all training, inspections, and maintenance activities related to abrasive wheels. How to Get Certified in Abrasive Wheels Training Getting certified in abrasive wheels training involves completing a recognized course and passing the necessary assessments. Here’s how you can achieve certification: Find a Training Provider: Look for accredited training providers that offer courses on abrasive wheels. Valley Plant Training is a well-known provider that offers comprehensive abrasive wheel training courses. You can also search for “abrasive wheel training near me” to find local providers or explore online options. Enroll in an Abrasive Wheel Course: Choose a course that covers both theoretical and practical aspects of abrasive wheel safety. The course should include topics such as wheel selection, proper mounting, safe operation techniques, and maintenance. Valley Plant Training offers courses that meet these criteria. Complete the Training: Attend the training sessions and participate actively. Training can be done in-person or online, depending on your preference and availability. Online courses can be convenient and flexible for busy schedules. Pass the Assessment: At the end of the course, you’ll need to pass an assessment to demonstrate your understanding of the material. This may include a written test and a practical demonstration of your skills. Receive Your Abrasive Wheels Certificate: Upon successful completion of the course and assessment, you will receive an abrasive wheels certificate. This certificate is proof that you have been trained in the safe use of abrasive wheels. Regular Refresher Courses: It’s important to stay updated with the latest safety practices and regulations. Consider taking refresher courses periodically to keep your skills and knowledge current. Valley Plant Training also offers refresher courses to help you stay up-to-date. Obtaining an abrasive wheel training certification from Valley Plant Training or another reputable provider not only enhances your safety and efficiency but also ensures compliance with legal requirements. It demonstrates to employers and regulatory bodies that you are qualified to handle abrasive wheels safely and effectively. Frequently Asked Questions What is abrasive wheel training? This is a training course that teaches you how to safely use and take care of machines that have abrasive wheels, like grinders. It covers choosing the right wheel, setting it up, and learning safety rules to prevent accidents. How much does abrasive wheels training cost? The price can change depending on where you are and who’s teaching the course. Generally, it might cost between £150.00 and £250 for the basic training. How long does abrasive wheels training last? Most basic courses take about a day to complete, around 6 to 8 hours. More detailed courses might take longer, especially if they include hands-on practice. Can abrasive wheel training be done online? Yes, you can learn the theory part online at your own pace. For learning how to actually use the wheels, you might need to attend a session in person to get practical experience. What are the two types of abrasive wheels? There are two main kinds: bonded and coated abrasive wheels. Bonded wheels are made of abrasive particles stuck together and are used for tasks like grinding or cutting. Coated wheels have a layer of abrasive glued to a backing material and are used for smoothing surfaces. What are the rules for abrasive wheels? The main rules include setting up the wheel correctly, wearing the right safety gear, checking the wheel regularly for damage, and following specific steps when using it to stay safe. There are also official safety standards you need to follow. Testing Of Candidates We will assess the delegates throughout the course on their levels of participation and understanding, they will demonstrate the inspection of various Abrasive wheels for damage and suitability. Then the delegates will complete a 25 question assessment paper at the end of the course. Successful delegates will be issued with the NPORS operator card Abrasive Wheels Training Covers: The requirements of the HASAW and PUWER and all associated regulations in respect of Abrasive Wheels. Hazards arising from the use of Abrasive Wheels and the precautions that should be taken. How to identify the Abrasive Wheel types and characteristics. Storage, handling and transportation of Abrasive Wheels. Inspecting and testing Abrasive Wheels. Personal protective equipment. Abrasive Wheels Training Available 7 days a week to suit your business requirements. VPT have a team of friendly and approachable instructors, who have a wealth of knowledge of abrasive wheels and the construction industry We have our own training centre for abrasive wheels conveniently located close to the M5 junction 9, In Tewkesbury. With its own purpose-built practical training area to simulate an actual working environment. Our abrasive wheels training and test packages are priced to be competitive. Discounts are available for multiple bookings We can send a fully qualified NPORS abrasive wheels Tester to your site nationwide, to reduce the amount of time away from work Other course: Enhance your skills with our specialized courses, including Lift Supervision Training, Appointed Person Training, Telehandler Training, Cat & Genny Training, Slinger Signaller Training, Lorry Loader Training and Crusher Training. Each program is designed to equip you with the expertise needed for excellence in your field.