• Professional Development
  • Medicine & Nursing
  • Arts & Crafts
  • Health & Wellbeing
  • Personal Development

213 Electrical Design courses

Per Unit Analysis for Single and Three Phase Systems

By Compete High

Course Title: Per Unit Analysis for Single and Three Phase Systems   Overview: Unlock the Power of Per Unit Analysis for Electrical Systems Efficiency! Are you ready to elevate your understanding of electrical systems to a new level? Our comprehensive course, 'Per Unit Analysis for Single and Three Phase Systems,' is designed to empower professionals like you with the knowledge and skills necessary to optimize electrical systems in both single and three-phase configurations.   Key Benefits: Deep Dive into Per Unit Analysis: Gain a profound understanding of the per unit system, an indispensable tool for simplifying complex electrical calculations. Master the art of transforming system parameters into a dimensionless form, allowing you to analyze and compare systems with ease. Single and Three-Phase Applications: Whether you're dealing with single-phase or three-phase systems, this course provides a thorough exploration of per unit analysis in both scenarios. From voltage and current transformations to power calculations, you'll be equipped to tackle real-world challenges in diverse electrical environments. Efficient Problem-Solving Techniques: Learn practical problem-solving techniques that will streamline your ability to troubleshoot and optimize electrical systems. Discover how per unit analysis simplifies the process of understanding system behavior, making you a more efficient and effective engineer. Real-World Case Studies: Delve into real-world case studies that bridge theoretical concepts with practical applications. Understand how per unit analysis has been successfully employed in various industries to enhance system performance and reliability. Interactive Learning Environment: Our course combines expertly crafted content with interactive learning tools, ensuring that you not only grasp the theoretical foundations but also apply them in simulated scenarios. Engage in hands-on exercises that reinforce your understanding and boost your confidence in applying per unit analysis.   Who Should Attend: Electrical Engineers Power Systems Designers Energy Analysts Maintenance and Operations Professionals Students and Graduates in Electrical Engineering   Enroll Today and Elevate Your Electrical Expertise! Don't miss this opportunity to enhance your skills and advance your career. Enroll in 'Per Unit Analysis for Single and Three Phase Systems' today and gain the knowledge to navigate the complexities of electrical systems with confidence. Your journey towards electrical mastery starts here! Course Curriculum Introduction To Per Unit Analysis For Single And Three Phase Systems Course Introduction To Per Unit Analysis For Single And Three Phase Systems Course 00:00 Per Phase Analysis Per Phase Analysis 00:00 Single Phase Pu Example Single Phase Pu Example 00:00 Three Phase Pu Analysis Transformer Configurations Three Phase Pu Analysis Transformer Configurations 00:00 Three Phase Pu Analysis Transformer Configurations Three Phase Pu Analysis Transformer Configurations 00:00 Three Phase Pu Analysis Transformer Configurations Three Phase Pu Analysis Transformer Configurations 00:00 Change Of Bases Change Of Bases 00:00 System Circuit Analysis System Circuit Analysis 00:00 Three Phase Pu Example Three Phase Pu Example 00:00 Pu Example Pu Example 00:00 Pu Example Pu Example 00:00 Pu Example Pu Example 00:00

Per Unit Analysis for Single and Three Phase Systems
Delivered Online On Demand5 hours 13 minutes
£25

Electrical Engineering for Electrical Substations

4.5(3)

By Studyhub UK

Embarking on a journey through the realm of electrical substations, the 'Electrical Engineering for Electrical Substations' course illuminates the path for aspiring electrical engineers. Imagine plunging into the intricacies of electrical substations, a pivotal component in our electrified world. This course offers a unique blend of theoretical knowledge and practical insights, vital for anyone keen on mastering the core elements of electrics and electronics. From the fundamentals in Unit 1, diving into the design of earthing systems in Unit 2, to the nuanced introduction to substation design in Unit 3, students are equipped with a comprehensive understanding of this specialised field. Moreover, the course is an opportunity to enhance one's prospects in various electrical engineering jobs, paving the way for a lucrative career. The course builds a strong foundation in electrical engineering principles and opens doors to diverse opportunities such as electrical engineering apprenticeships. It serves as a stepping stone for those seeking to delve deeper into the field, potentially leading to roles in designing and managing the heart of electrical systems - the substations. This is more than just an educational journey; it's a route to a rewarding career marked by competitive electrical engineering salaries and fulfilling job roles. For those fascinated by the latest technological advancements, the course touches upon the electrifying world of electric car engines, integrating modern innovation with traditional electrical engineering concepts. This unique blend of old and new prepares learners for a future where electrical engineering expertise is valued and essential. Imagine being at the forefront of this exciting field, where every day brings new challenges and opportunities. Learning Outcomes Gain a comprehensive understanding of the basics of electrical substations. Acquire knowledge in designing effective earthing systems. Learn the principles of substation design and management. Develop an appreciation of the integration between traditional electrical engineering and modern innovations like electric car engines. Prepare for a diverse range of electrical engineering roles in various sectors. Why buy this Electrical Engineering for Electrical Substations? Unlimited access to the course for a lifetime. Opportunity to earn a certificate accredited by the CPD Quality Standards and CIQ after completing this course. Structured lesson planning in line with industry standards. Immerse yourself in innovative and captivating course materials and activities. Assessments designed to evaluate advanced cognitive abilities and skill proficiency. Flexibility to complete the Course at your own pace, on your own schedule. Receive full tutor support throughout the week, from Monday to Friday, to enhance your learning experience. Unlock career resources for CV improvement, interview readiness, and job success. Certification After studying the course materials of the Electrical Engineering for Electrical Substations there will be a written assignment test which you can take either during or at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £5.99. Original Hard Copy certificates need to be ordered at an additional cost of £9.60. Who is this Electrical Engineering for Electrical Substations course for? Individuals aspiring to become electrical engineers. Professionals seeking to expand their knowledge in substation design and management. Students interested in pursuing a career in electrical engineering. Technicians aiming for an electrical engineering apprenticeship. Anyone interested in the technological aspects of electric car engines. Prerequisites This Electrical Engineering for Electrical Substations does not require you to have any prior qualifications or experience. You can just enrol and start learning.This Electrical Engineering for Electrical Substations was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Career path Electrical Engineer: Average Salary £28,000 - £40,000 annually Substation Design Engineer: Average Salary £32,000 - £48,000 annually Electrical Project Manager: Average Salary £35,000 - £55,000 annually Senior Electrical Engineer: Average Salary £40,000 - £60,000 annually Electrical Engineering Technician: Average Salary £25,000 - £35,000 annually Renewable Energy Engineer: Average Salary £30,000 - £45,000 annually Course Curriculum Electrical Engineering for Electrical Substations Unit 1: Basics of Electrical Substations Module 1: Introduction To Electrical Substation 00:06:00 Module 2: Construction of Electrical Substation and Transformers 00:09:00 Module 3: Instrument Transformers and Principle of Operation of Trip Circuit 00:13:00 Module 4: Types Of Circuit Breakers And Fuses 00:23:00 Module 5: Types of Relays According to Function, Construction and Time Characteristics 00:06:00 Module 6: Definition of Busbar and Its Schemes 00:17:00 Module 7: Construction of Underground Cables 00:10:00 Module 8: Construction of Overhead Transmission Lines 00:15:00 Module 9: Comparison between Underground Cables and Overhead Transmission Lines@ 00:05:00 Module 10: Types of Switches In Power System and Substations 00:08:00 Module 11: Importance of Capacitor Banks in Power System 00:08:00 Module 12: Other Important Components in Electrical Substation 00:07:00 Module 13: Classification of Substations 00:05:00 Module 14: Relation between Voltage and Substations 00:02:00 Module 15: Air Insulated Substation and Gas Insulated Substation 00:09:00 Module 16: Importance of Ring Main Unit in Power System 00:07:00 Module 17:Extra Images 00:01:00 Unit 2: Design of Earthing System Module 1: Effect of Current on Human Body 00:09:00 Module 2: Types of Electric Hazards 00:08:00 Module 3: Classification of Earthing Systems 00:24:00 Module 4: Components of Earthing System 00:09:00 Module 5: Design and Resistance of Earthing Electrode 00:12:00 Module 6: Design and Resistance of Earthing Conductor 00:13:00 Module 7: Earth Resistance by Megger and Three Point Method 00:03:00 Module 8: Design Earthing or Ground Grid Using ETAP 00:21:00 Unit 3: Introduction to Design of Substation Module 1: What Ip or Ingress Protection 00:05:00 Module 2: Selection of Busbars in Electrical Substation 00:11:00 Module 3: Design of Substations 00:19:00 Module 4: Single Line Diagram of 66 to 11kv Substation 00:20:00 Assignment Assignment -Electrical Engineering for Electrical Substations 00:00:00

Electrical Engineering for Electrical Substations
Delivered Online On Demand5 hours 5 minutes
£10.99

Electrical Circuits Laws and Methods

4.5(3)

By Studyhub UK

The 'Electrical Circuits Laws and Methods' course is designed to provide a comprehensive understanding of electric circuits, laws, and analytical methods. It covers fundamental concepts, basic laws, methods of analysis, circuit theorems, operational amplifiers, and capacitors and inductors. Students will learn essential principles to analyze and design electrical circuits effectively. Learning Outcomes: Understand the basic concepts of electric circuits, including electric charge, current, voltage, power, and energy. Apply Ohm's Law and other basic laws to analyze resistive circuits and determine currents and voltages. Use nodal and mesh analysis methods to analyze and solve complex electrical circuits with various sources. Apply circuit theorems such as the Superposition Theorem, Thevenin's Theorem, and Norton's Theorem to simplify circuit analysis. Comprehend the properties and applications of operational amplifiers in various amplifier configurations. Analyze capacitors and inductors in DC circuits, calculate their stored energy, and understand their equivalent capacitance and inductance in series and parallel configurations. Why buy this Electrical Circuits Laws and Methods? Unlimited access to the course for a lifetime. Opportunity to earn a certificate accredited by the CPD Quality Standards and CIQ after completing this course. Structured lesson planning in line with industry standards. Immerse yourself in innovative and captivating course materials and activities. Assessments designed to evaluate advanced cognitive abilities and skill proficiency. Flexibility to complete the Course at your own pace, on your own schedule. Receive full tutor support throughout the week, from Monday to Friday, to enhance your learning experience. Unlock career resources for CV improvement, interview readiness, and job success. Certification After studying the course materials of the Electrical Circuits Laws and Methods there will be a written assignment test which you can take either during or at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £5.99. Original Hard Copy certificates need to be ordered at an additional cost of £9.60. Who is this course for? The Electrical Circuits Laws and Methods course is designed for undergraduate and graduate electrical engineering students as a foundational study of circuit theory. It is suitable for electronics enthusiasts eager to grasp the functioning and design of electrical circuits for various applications. Engineering technicians and technologists working in fields like telecommunications and manufacturing can benefit from this course to better understand and troubleshoot electrical circuits in practical settings. Electrical technicians and electricians can enhance their problem-solving abilities and theoretical knowledge of electrical circuits by taking this course. Hobbyists and DIY enthusiasts interested in electronics projects will find value in learning circuit design and troubleshooting through this course. Professionals in engineering and related fields can use this course for continuing education to refresh their knowledge and stay up-to-date with advancements in electrical circuit theory and methods. Prerequisites This Electrical Circuits Laws and Methods does not require you to have any prior qualifications or experience. You can just enrol and start learning.This Electrical Circuits Laws and Methods was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Career path Electrical Engineer: £28,000 - £70,000 per year Electronics Engineer: £30,000 - £75,000 per year Electrician: £24,000 - £45,000 per year Power Systems Engineer: £32,000 - £80,000 per year Telecommunications Engineer: £28,000 - £70,000 per year Automation and Control Systems Engineer: £35,000 - £80,000 per year Course Curriculum Unit 1- Basic Concepts Module 1- What Is an Electric Circuit 00:02:00 Module 2-System of Units 00:07:00 Module 3- What Is an Electric Charge 00:05:00 Module 4- What Is an Electric Current 00:08:00 Module 5-Example 1 00:01:00 Module 6- Example 2 00:02:00 Module 7- Example 3 00:02:00 Module 8- What Is Voltage 00:07:00 Module 9- What Is Power 00:06:00 Module 10- What Is Energy 00:04:00 Module 11- Example 4 00:03:00 Module 12-Example 5 00:03:00 Module 13- Dependent and Independent Sources 00:05:00 Module 14- Example 6 Part 1 00:04:00 Module 15- Example 6 Part 2 00:01:00 Module 16- Application 1 Cathode Ray Tube 00:04:00 Module 17-Example 10 00:03:00 Module 18- Application 2 Electricity Bills 00:02:00 Module 19- Example 8 00:03:00 Unit 2- Basic Laws Module 1- Introduction to Basic Laws 00:01:00 Module 2- Definition of Resistance 00:06:00 Module 3- Ohm's Law 00:02:00 Module 4- Types of Resistances 00:06:00 Module 5- Open and Short Circuit 00:05:00 Module 6- Definition of Conductance 00:04:00 Module 7-Example 1 00:01:00 Module 8- Example 2 00:03:00 Module 9- Example 3 00:03:00 Module 10- Branch, Node and Loops 00:07:00 Module 11- Series and Parallel Connection 00:04:00 Module 12- KCL 00:04:00 Module 13- KVL 00:03:00 Module 14- Example 4 00:05:00 Module 15- Example 5 00:02:00 Module 16- Example 6 00:06:00 Module 17- Series Resistors and Voltage Division 00:07:00 Module 18-Parallel Resistors and Current Division 00:12:00 Module 19- Analogy between Resistance and Conductance 00:07:00 Module 20-Example 7 00:03:00 Module 21-Example 8 00:04:00 Module 22- Introduction to Delta-Wye Connection 00:06:00 Module 23-Delta to Wye Transformation 00:05:00 Module 24- Wye to Delta Transformation 00:07:00 Module 25-Example 9 00:03:00 Module 26- Example 10 00:15:00 Module 27- Application Lighting Bulbs 00:03:00 Module 28-Example 11 00:05:00 Unit 3- Methods of Analysis Module 1- Introduction to Methods of Analysis 00:02:00 Module 2- Nodal Analysis with No Voltage Source 00:15:00 Module 3-Example 1 00:04:00 Module 4-Cramer's Method 00:04:00 Module 5-Nodal Analysis with Voltage Source 00:07:00 Module 6- Example 2 00:05:00 Module 7- Example 3 00:13:00 Module 8-Mesh Analysis with No Current Source 00:10:00 Module 9-Example 4 00:04:00 Module 10- Example 5 00:06:00 Module 11-Mesh Analysis with Current Source 00:07:00 Module 12-Example 6 00:08:00 Module 13-Nodal Vs Mesh Analysis 00:04:00 Module 14-Application DC Transistor 00:04:00 Module 15-Example 7 00:04:00 Unit 4- Circuit Theorems Module 1-Introduction to Circuit theorems 00:02:00 Module 2-Linearity of Circuit 00:07:00 Module 3-Example 1 00:04:00 Module 4-Superposition Theorem 00:07:00 Module 5- Example 2 00:04:00 Module 6-Example 3 00:06:00 Module 7-Source Transformation 00:08:00 Module 8-Example 4 00:05:00 Module 9-Example 5 00:03:00 Module 10-Thevenin Theorem 00:10:00 Module 11-Example 6 00:06:00 Module 12-Example 7 00:05:00 Module 13- Norton's Theorem 00:05:00 Module 14-Example 8 00:03:00 Module 15-Example 9 00:05:00 Module 16-Maximum Power Transfer 00:05:00 Module 17-Example 10 00:03:00 Module 18-Resistance Measurement 00:05:00 Module 19-Example 11 00:01:00 Module 20-Example 12 00:04:00 Module 21-Summary 00:05:00 Unit 5- Operational Amplifiers Module 1-Introduction to Operational Amplifiers 00:03:00 Module 2-Construction of Operational Amplifiers 00:07:00 Module 3-Equivalent Circuit of non Ideal Op Amp 00:10:00 Module 4-Vo Vs Vd Relation Curve 00:03:00 Module 5-Example 1 00:09:00 Module 6-Ideal Op Amp 00:07:00 Module 7- Example 2 00:04:00 Module 8-Inverting Amplifier 00:05:00 Module 9-Example 3 00:05:00 Module 10-Example 4 00:02:00 Module 11-Non Inverting Amplifier 00:08:00 Module 12-Example 5 00:03:00 Module 13-Summing Amplifier 00:05:00 Module 14-Example 6 00:02:00 Module 15-Difference amplifier 00:06:00 Module 16-Example 7 00:08:00 Module 17-Cascaded Op Amp Circuits 00:06:00 Module 18-Example 8 00:04:00 Module 19-Application Digital to Analog Converter 00:06:00 Module 20-Example 9 00:04:00 Module 21-Instrumentation Amplifiers 00:05:00 Module 22-Example 10 00:01:00 Module 23-Summary 00:04:00 Unit 6- Capacitors and Inductors Module 1-Introduction to Capacitors and Inductors 00:02:00 Module 2-Capacitor 00:06:00 Module 3-Capacitance 00:02:00 Module 4-Voltage-Current Relation in Capacitor 00:03:00 Module 5-Energy Stored in Capacitor 00:06:00 Module 6-DC Voltage and Practical Capacitor 00:02:00 Module 7-Example 1 00:01:00 Module 8-Example 2 00:01:00 Module 9-Example 3 00:05:00 Module 10-Equivalent Capacitance of Parallel Capacitors 00:02:00 Module 11-Equivalent Capacitance of Series Capacitors 00:03:00 Module 12-Example 4 00:02:00 Module 13-Definition of Inductors 00:06:00 Module 14-Definition of Inductance 00:03:00 Module 15-Voltage-Current Relation in Inductor 00:03:00 Module 16-Power and Energy Stored in Inductor 00:02:00 Module 17-DC Source and Inductor 00:04:00 Module 18-Example 5 00:02:00 Module 19-Series Inductors 00:03:00 Module 20-Parallel Inductors 00:04:00 Module 21-Example 6 00:01:00 Module 22-Small Summary to 3 Basic Elements 00:02:00 Module 23-Example 7 00:05:00 Module 24-Application Integrator 00:05:00 Module 25-Example 8 00:03:00 Module 26-Application Differentiator 00:02:00 Module 27-Example 9 00:06:00 Module 28-Summary 00:05:00 Assignment Assignment - Electrical Circuits Laws and Methods 00:00:00

Electrical Circuits Laws and Methods
Delivered Online On Demand10 hours 19 minutes
£10.99

Electrical Engineering - Light Current System

4.5(3)

By Studyhub UK

Imagine a world where every flick of a switch, the press of a button, and the smooth operation of the modern marvels we often take for granted is made possible by the genius of electrical engineering. This course, 'Electrical Engineering - Light Current System,' is your gateway to understanding and mastering the intricacies of light current systems, from fire alarm to sound systems.  As the demand for skilled electrical engineers surges, with electrical engineering positions becoming increasingly pivotal in our technologically advancing world, this course offers a golden opportunity to step into a field where the electrical engineering salary reflects the critical nature of the work. By diving into this curriculum, learners will not only secure electrical engineering jobs but will also pave the way for innovation and safety in numerous industries. Learning Outcomes: Acquire a foundational understanding of light current systems, including fire alarms, MATV, and data systems. Develop the ability to design, install, and maintain modern CCTV and sound systems. Enhance problem-solving skills specific to the challenges encountered in electrical engineering apprenticeships. Prepare for a diverse range of electrical engineer jobs through comprehensive knowledge and understanding of light current technologies. Gain insights into project management and the ability to oversee complex electrical installations. Why buy this Electrical Engineering - Light Current System? Unlimited access to the course for a lifetime. Opportunity to earn a certificate accredited by the CPD Quality Standards and CIQ after completing this course. Structured lesson planning in line with industry standards. Immerse yourself in innovative and captivating course materials and activities. Assessments designed to evaluate advanced cognitive abilities and skill proficiency. Flexibility to complete the Course at your own pace, on your own schedule. Receive full tutor support throughout the week, from Monday to Friday, to enhance your learning experience. Unlock career resources for CV improvement, interview readiness, and job success. Certification After studying the course materials of the Electrical Engineering - Light Current System there will be a written assignment test which you can take either during or at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £5.99. Original Hard Copy certificates need to be ordered at an additional cost of £9.60. Who is this Electrical Engineering - Light Current System course for? Individuals with a keen interest in pursuing a career in electrical engineering. Technicians looking to upgrade their knowledge and secure better positions. Fresh graduates seeking electrical engineering apprenticeship opportunities. Professionals aiming to transition into electrical engineering jobs. Enthusiasts of technology and innovation looking to understand light current systems. Prerequisites This Electrical Engineering - Light Current System does not require you to have any prior qualifications or experience. You can just enrol and start learning.This Electrical Engineering - Light Current System was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Career path Light Current System Designer: £35,000 - £50,000 per annum Electrical Engineer in Fire Alarm Systems: £30,000 - £45,000 per annum CCTV and Security Systems Engineer: £28,000 - £42,000 per annum Data Systems Specialist: £32,000 - £48,000 per annum Sound System Engineer: £29,000 - £43,000 per annum Project Manager for Electrical Installations: £40,000 - £60,000 per annum Course Curriculum Unit 1- Light Current Fire Alarm System Module 1- Light Current Fire Alarm System Part 1 00:17:00 Module 2- Light Current Fire Alarm System Part 2 00:15:00 Module 3- Light Current Fire Alarm System Part 3 00:18:00 Module 4- Light Current Fire Alarm System Part 4 00:17:00 Module 5- Light Current Fire Alarm System Part 5 00:17:00 Module 6- Light Current Fire Alarm System Part 6 00:17:00 Unit 2- Light Current MATV and Telephone System Module 1- Light Current MATV System Part 1 00:14:00 Module 2- Light Current MATV System Part 2 00:17:00 Module 3- Light Current Telephone System 00:19:00 Unit 3- Light Current Data System Module 1- Light Current Data System Part 1 00:15:00 Module 2- Light Current Data System Part 2 00:20:00 Unit 4- Light Current CCTV System Module 1- Light Current CCTV System Part 1 00:14:00 Module 2- Light Current CCTV System Part 2 00:23:00 Unit 5- Light Current Sound System Module 1- Light Current Sound System Part 1 00:18:00 Module 2- Light Current Sound System Part 2 00:16:00

Electrical Engineering - Light Current System
Delivered Online On Demand4 hours 17 minutes
£10.99

MATLAB Simulink for Electrical Power Engineering

4.5(3)

By Studyhub UK

The 'MATLAB Simulink for Electrical Power Engineering' course focuses on practical applications and simulations using MATLAB and Simulink for power electronics, solar energy, DC motors, synchronous generators, and induction motors. It aims to provide participants with hands-on experience in electrical power engineering simulations and analysis using MATLAB and Simulink. Learning Outcomes: Understand the applications of matrices in MATLAB and solve non-linear equations using appropriate functions. Simulate power electronics circuits, including rectifiers, choppers, regulators, and inverters, using Simulink in MATLAB. Analyze and simulate solar energy systems and separately excited DC machines in MATLAB. Model and simulate synchronous generators connected to a small power system using MATLAB and Simulink. Simulate induction motors and study their equivalent circuits and torque-speed characteristics using Simulink. Implement PID controllers in Simulink and tune them for effective control in power systems simulations. Acquire hands-on skills in using MATLAB and Simulink to perform various electrical power engineering simulations. Apply MATLAB and Simulink tools to solve practical electrical power engineering problems. Develop an in-depth understanding of power electronics, motor simulations, and solar energy systems. Successfully complete the course with the ability to perform advanced electrical power engineering simulations using MATLAB and Simulink. Why buy this MATLAB Simulink for Electrical Power Engineering? Unlimited access to the course for forever Digital Certificate, Transcript, student ID all included in the price Absolutely no hidden fees Directly receive CPD accredited qualifications after course completion Receive one to one assistance on every weekday from professionals Immediately receive the PDF certificate after passing Receive the original copies of your certificate and transcript on the next working day Easily learn the skills and knowledge from the comfort of your home Certification After studying the course materials of the MATLAB Simulink for Electrical Power Engineering there will be a written assignment test which you can take either during or at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £5.99. Original Hard Copy certificates need to be ordered at an additional cost of £9.60. Who is this course for? This MATLAB Simulink for Electrical Power Engineering course is ideal for Students Recent graduates Job Seekers Anyone interested in this topic People already working in the relevant fields and want to polish their knowledge and skill. Prerequisites This MATLAB Simulink for Electrical Power Engineering does not require you to have any prior qualifications or experience. You can just enrol and start learning.This MATLAB Simulink for Electrical Power Engineering was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Career path As this course comes with multiple courses included as bonus, you will be able to pursue multiple occupations. This MATLAB Simulink for Electrical Power Engineering is a great way for you to gain multiple skills from the comfort of your home. Course Curriculum Unit 1- Applications on Matrices in MATLAB Module 1- Solving One Non Linear Equation in MATLAB Using Fzero Function 00:15:00 Module 2-Example 1 on Solving Multiple Non Linear Equations in MATLAB Using Fsolve Function 00:15:00 Module 3- Example 2 on Solving Multiple Non Linear Equations in Matlab Using Fsolve 00:13:00 Module 4-Application Multi Level Inverter Part 1 00:25:00 Module 5- Application Multi Level Inverter Part 2 00:05:00 Unit 2-Power Electronics Simulations Using Simulink in MATLAB Module 1-Introduction to MATLAB Simulations Using Simulink 00:04:00 Module 2-Half Wave Uncontrolled Rectifier with R Load Principle of Operation 00:21:00 Module 3- Half Wave Controlled Rectifier R Load Principle of Operation 00:05:00 Module 4-Simulation of Half Wave Controlled Rectifier Using Simulink In Matlab 00:26:00 Module 5- Principle of Operation of Fully Controlled Bridge Rectifier Part 1 00:06:00 Module 6- Principle of Operation of Fully Controlled Bridge Rectifier Part 2 00:06:00 Module 7-Simulation of Bridge Controlled Rectifier 00:16:00 Module 8-AC Chopper with R Load Principle of Operation 00:14:00 Module 9- Simulation of AC Chopper with R and RL Loads in MATLAB 00:11:00 Module 10- Buck Regulator Principle of Operation Part 1 00:16:00 Module 11-Buck Regulator Principle of Operation Part 2 00:17:00 Module 12-Simulation of Buck Regulator in MATLAB 00:14:00 Module 13-Boost Regulator Principle of Operation 00:23:00 Module 14- Simulation of Boost Regulator in MATLAB 00:12:00 Module 15-Buck-Boost Regulator Principle of Operation 00:17:00 Module 16- Simulation of Buck-Boost Regulator 00:09:00 Module 17- Single Phase Half Bridge R-Load 00:15:00 Module 18- Single Phase Half Bridge RL-Load 00:08:00 Module 19-Simulation of Single Phase Half Bridge Inverter 00:18:00 Module 20-Single Phase Bridge Inverter R-Load 00:06:00 Module 21-Single Phase Bridge Inverter RL-Load 00:07:00 Module 22-Simulation of Single Phase Bridge Inverter 00:10:00 Module 23-Three Phase Inverters and Obtaining The Line Voltages 00:15:00 Module 24-Three Phase Inverters and Obtaining The Phase Voltages 00:17:00 Module 25-Simulation of Three Phase Inverter 00:17:00 Module 26-Simulation of Charging and Discharging Capacitor Using Matlab 00:10:00 Unit 3- Solar Energy Simulation Using Simulink in MATLAB Module 1-Separately Excited DC Machine 00:21:00 Module 2-DC Motor Modelling without Load Using Simulink in MATLAB 00:25:00 Module 3-DC Motor Modelling with Load Using Simulink in MALTAB 00:23:00 Module 4-DC Motor Block Simulation Using Power Library in MATLAB 00:16:00 Unit 4- DC Motor Simulation Using Simulink in MATLAB Module 1-Construction and Principle of Operation of Synchronous Generator 00:29:00 Module 2-Equivalent Circuit and Phasor Diagram of Non Salient Synchronous Machine 00:29:00 Module 3-Equivalent Circuit and Phasor Diagram of Salient Synchronous Machine 00:39:00 Module 4-Simulation of Synchronous Machine Connected to Small Power System 00:38:00 Unit 5- Induction Motor Simulation Using Simulink in MATLAB Module 1-Construction and Theory of Operation of Induction Machines 00:27:00 Module 2-Equivalent Circuit and Power Flow in Induction Motor 00:23:00 Module 3-Torque-Speed Characteristics of Induction Motor 00:20:00 Module 4- Simulation of Induction Motor or Asynchronous Motor Using Simulink 00:33:00 Unit 6- Synchronous Generator Simulation in Simulink of MATLAB Module 1- Importing Data from PSCAD Program for Fault Location Detection to MATLAB Program 00:37:00 Unit 7- Power System Simulations Module 1-How to Implement PID Controller in Simulink of MATLAB 00:14:00 Module 2-Tuning a PID Controller In MATLAB Simulink 00:17:00 Assignment Assignment - MATLAB Simulink for Electrical Power Engineering 00:00:00

MATLAB Simulink for Electrical Power Engineering
Delivered Online On Demand13 hours 24 minutes
£10.99

Electrical Substations Protection for Electrical Engineering

4.5(3)

By Studyhub UK

Overview Uplift Your Career & Skill Up to Your Dream Job - Learning Simplified From Home! Kickstart your career & boost your employability by helping you discover your skills, talents and interests with our special Electrical Substations Protection for Electrical Engineering Course. You'll create a pathway to your ideal job as this course is designed to uplift your career in the relevant industry. It provides professional training that employers are looking for in today's workplaces. The Electrical Substations Protection for Electrical Engineering Course is one of the most prestigious training offered at StudyHub and is highly valued by employers for good reason. This Electrical Substations Protection for Electrical Engineering Course has been designed by industry experts to provide our learners with the best learning experience possible to increase their understanding of their chosen field. This Electrical Substations Protection for Electrical Engineering Course, like every one of Study Hub's courses, is meticulously developed and well researched. Every one of the topics is divided into elementary modules, allowing our students to grasp each lesson quickly. At StudyHub, we don't just offer courses; we also provide a valuable teaching process. When you buy a course from StudyHub, you get unlimited Lifetime access with 24/7 dedicated tutor support. Why buy this Electrical Substations Protection for Electrical Engineering? Unlimited access to the course for forever Digital Certificate, Transcript, student ID all included in the price Absolutely no hidden fees Directly receive CPD accredited qualifications after course completion Receive one to one assistance on every weekday from professionals Immediately receive the PDF certificate after passing Receive the original copies of your certificate and transcript on the next working day Easily learn the skills and knowledge from the comfort of your home Certification After studying the course materials of the Electrical Substations Protection for Electrical Engineering there will be a written assignment test which you can take either during or at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £5.99. Original Hard Copy certificates need to be ordered at an additional cost of £9.60. Who is this course for? This Electrical Substations Protection for Electrical Engineering course is ideal for Students Recent graduates Job Seekers Anyone interested in this topic People already working in the relevant fields and want to polish their knowledge and skill. Prerequisites This Electrical Substations Protection for Electrical Engineering does not require you to have any prior qualifications or experience. You can just enrol and start learning.This Electrical Substations Protection for Electrical Engineering was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Career path As this course comes with multiple courses included as bonus, you will be able to pursue multiple occupations. This Electrical Substations Protection for Electrical Engineering is a great way for you to gain multiple skills from the comfort of your home. Course Curriculum Distribution Station & Feeder Protection Masterclass Module 01: Introduction 00:09:00 Module 02: Per Phase Analysis 00:38:00 Module 03: Sub-Station Protection 01:14:00 Module 04: A Protection Coordination Problem 00:30:00 Module 05: Surge Protective Equipment 00:32:00 Module 06: Transformer Protection 00:54:00 Assignment Assignment - Electrical Substations Protection for Electrical Engineering 00:00:00

Electrical Substations Protection for Electrical Engineering
Delivered Online On Demand3 hours 57 minutes
£10.99

Power Electronics for Electrical Engineering

4.5(3)

By Studyhub UK

Overview Uplift Your Career & Skill Up to Your Dream Job - Learning Simplified From Home! Kickstart your career & boost your employability by helping you discover your skills, talents and interests with our special Power Electronics for Electrical Engineering Course. You'll create a pathway to your ideal job as this course is designed to uplift your career in the relevant industry. It provides professional training that employers are looking for in today's workplaces. The Power Electronics for Electrical Engineering Course is one of the most prestigious training offered at StudyHub and is highly valued by employers for good reason. This Power Electronics for Electrical Engineering Course has been designed by industry experts to provide our learners with the best learning experience possible to increase their understanding of their chosen field. This Power Electronics for Electrical Engineering Course, like every one of Study Hub's courses, is meticulously developed and well researched. Every one of the topics is divided into elementary modules, allowing our students to grasp each lesson quickly. At StudyHub, we don't just offer courses; we also provide a valuable teaching process. When you buy a course from StudyHub, you get unlimited Lifetime access with 24/7 dedicated tutor support. Why buy this Power Electronics for Electrical Engineering? Unlimited access to the course for forever Digital Certificate, Transcript, student ID all included in the price Absolutely no hidden fees Directly receive CPD accredited qualifications after course completion Receive one to one assistance on every weekday from professionals Immediately receive the PDF certificate after passing Receive the original copies of your certificate and transcript on the next working day Easily learn the skills and knowledge from the comfort of your home Certification After studying the course materials of the Power Electronics for Electrical Engineering there will be a written assignment test which you can take either during or at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £5.99. Original Hard Copy certificates need to be ordered at an additional cost of £9.60. Who is this course for? This Power Electronics for Electrical Engineering course is ideal for Students Recent graduates Job Seekers Anyone interested in this topic People already working in the relevant fields and want to polish their knowledge and skill. Prerequisites This Power Electronics for Electrical Engineering does not require you to have any prior qualifications or experience. You can just enrol and start learning.This Power Electronics for Electrical Engineering was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Career path As this course comes with multiple courses included as bonus, you will be able to pursue multiple occupations. This Power Electronics for Electrical Engineering is a great way for you to gain multiple skills from the comfort of your home. Course Curriculum Unit 1- Introduction to Power Electronics Components Module 1- Introduction to Power Electronics 00:13:00 Module 2- Uncontrolled Switches 00:17:00 Module 3- What is the Benefit of Diode 00:06:00 Module 4- Semi-Controlled Switches Part 1 00:09:00 Module 5- Semi-Controlled Switches Part 2 00:14:00 Module 6- Semi-Controlled Switches Part 3 00:05:00 Module 7- What is the Benefit of Thyristor 00:05:00 Module 8- Fully Controlled Switches Part 1 00:17:00 Module 9- Fully Controlled Switches Part 2 00:10:00 Module 10- Fully Controlled Switches Part 3 00:12:00 Unit 2- Fundamentals of Rectifier Circuits Module 1- Overview on Rectifiers 00:02:00 Module 2- Rectifier Definition 00:01:00 Module 3- Half Wave Uncontrolled Rectifier with R Load 00:21:00 Module 4- Example on Half Wave Uncontrolled Rectifier with R Load Part 1 00:06:00 Module 5- Example on Half Wave Uncontrolled Rectifier with R Load Part 2 00:07:00 Module 6- Half Wave Uncontrolled Rectifier with RL Load 00:10:00 Module 7- Derivation of the Discontinuous Current in R-L Load 00:08:00 Module 8- Freewheeling Diode (Commutation Diode) 00:03:00 Module 9- Half Wave R-L Load with FWD 00:09:00 Module 10- Difference Between Continuous and Discontinuous Mode in RL Load 00:07:00 Module 11- Half Wave RL Load with FWD Continuous Mode 00:06:00 Module 12- Example on Half Wave Rectifier with FWD 00:07:00 Module 13- Bridge Full Wave Uncontrolled Rectifier Part 1 00:07:00 Module 14- Bridge Full Wave Uncontrolled Rectifier Part 2 00:05:00 Module 15- Quick Revision on Bridge Full Wave Uncontrolled Rectifier 00:06:00 Module 16- Firing Angle 00:02:00 Module 17- Half Wave Controlled Rectifier R Load 00:05:00 Module 18- Half Wave Controlled Rectifier R-L Load 00:04:00 Module 19- Half Controlled R-L Load with FWD 00:06:00 Module 20- Example 1 00:07:00 Module 21- Example 2 00:08:00 Module 22- Example 3 00:13:00 Module 23- Example 4 00:09:00 Module 24- Example 5 00:05:00 Module 25- Fully Controlled Bridge Rectifier Part 1 00:06:00 Module 26- Fully Controlled Bridge Rectifier Part 2 00:06:00 Module 27- Quick Revision on Bridge Full Wave Controlled Rectifier 00:02:00 Module 28- Example 6 00:08:00 Module 29- Half Controlled Bridge Rectifier 00:08:00 Module 30- Half Controlled Bridge Rectifier with FWD 00:05:00 Module 31- Example 7 00:06:00 Module 32- Example 8 00:07:00 Module 33- Performance Parameters 00:04:00 Module 34- Power Factor 00:04:00 Unit 3- Fundamentals of AC Choppers Module 1- Introduction to AC Choppers 00:02:00 Module 2- Definition of AC Choppers 00:05:00 Module 3- Switching Techniques in AC Choppers 00:06:00 Module 4- Applications on AC Choppers 00:03:00 Module 5- Types of AC Choppers 00:02:00 Module 6- AC Chopper with R Load 00:14:00 Module 7- Example 1 on AC Chopper with R Load 00:06:00 Module 8- Example 2 on AC Chopper with R Load 00:04:00 Module 9- AC Chopper with L Load Part 1 00:13:00 Module 10- AC Chopper with L Load Part 2 00:06:00 Module 11- Example on AC Chopper with L Load 00:08:00 Module 12- AC Chopper with RL Series Load 00:20:00 Module 13- Example on AC Chopper with RL Series Load 00:07:00 Module 14- AC Chopper with RL Parallel Load 00:25:00 Module 15- Example on AC Chopper with RL Parallel Load 00:06:00 Module 16- AC Chopper with Pure Capacitive Load 00:14:00 Module 17- Example on AC Chopper with Pure Capacitive Load 00:04:00 Module 18- AC Chopper Loaded by Heavy Rectifier 00:06:00 Module 19- AC Chopper Loaded by an AC Motor with Sinusoidal Back Emf 00:12:00 Module 20- Example on AC Chopper Loaded by an AC Motor with Sinusoidal Back Emf 00:08:00 Module 21- Integral Cycle Control 00:11:00 Module 22- Example on Integral Cycle Control 00:04:00 Unit 4- Fundamentals of DC Choppers Module 1- Introduction to DC Choppers 00:02:00 Module 2- Definition and Application of DC Choppers 00:05:00 Module 3- Step down DC Chopper with R Load 00:12:00 Module 4- Example on Step Dwon DC Chopper with R Load 00:08:00 Module 5- Generation of Duty Cycle 00:09:00 Module 6- Switching Techniques 00:03:00 Module 7- Step Down DC Chopper with RLE Load Part 1 00:19:00 Module 8- Step Down DC Chopper with RLE Load Part 2 00:15:00 Module 9- Example 1 on Step Down DC Chopper with RLE Load 00:13:00 Module 10- Example 2 on Step Down DC Chopper with RLE Load 00:02:00 Module 11- Step Up DC Chopper with R or RL Load 00:09:00 Module 12- Step Up DC Chopper with RE Load 00:15:00 Module 13- Example on Step Up DC Chopper with RE Load 00:20:00 Module 14- Buck Regulator Part 1 00:16:00 Module 15- Buck Regulator Part 2 00:17:00 Module 16- Example on Buck Regulator 00:03:00 Module 17- Boost Regulator 00:23:00 Module 18- Example on Boost Regulator 00:06:00 Module 19- Buck Boost Converter 00:17:00 Module 20- Example on Buck-Boost Converter 00:05:00 Unit 5- Fundamentals of Inverters Module 1- Introduction to Inverters 00:02:00 Module 2- Definition of Inverters 00:04:00 Module 3- Importance and Applications of Inverters 00:08:00 Module 4- Single Phase Half Bridge R-Load 00:15:00 Module 5- Single Phase Half Bridge RL- Load 00:08:00 Module 6- Performance Parameters of an Inverter 00:05:00 Module 7- Example on Single Phase Half Bridge 00:10:00 Module 8- Single Phase Bridge Inverter R- Load 00:06:00 Module 9- Single Phase Bridge Inverter RL- Load 00:07:00 Module 10- Example on Single Phase Bridge Inverter 00:06:00 Module 11- Three Phase Inverters and Obtaining the Line Voltages 00:15:00 Module 12- Threee Phase Inverters and Obtaining The Phase Voltages 00:17:00 Module 13- Example on Three Phase Inverters 00:16:00 Module 14- Single Pulse Width Modulation 00:13:00 Module 15- Multiple Pulse Width Modulation 00:13:00 Module 16- Example on Multiple Pulse Width Modulation 00:04:00 Module 17- Sinusoidal Pulse Width Modulation 00:16:00 Module 18- Industrial Inverter 00:03:00 Assignment Assignment - Power Electronics for Electrical Engineering 00:00:00

Power Electronics for Electrical Engineering
Delivered Online On Demand15 hours 1 minutes
£10.99

Electrical Machines for Electrical Engineering

By NextGen Learning

In today's fast-paced and competitive world, staying ahead requires constant growth and upskilling. Welcome to Electrical Machines for Electrical Engineering, an empowering journey designed to equip you with the essential knowledge and skills in Electrical Machines for Electrical Engineering to thrive in your professional endeavours. This comprehensive Electrical Machines for Electrical Engineeringcourse combines theoretical concepts with essential applications, providing you with a well-rounded understanding of the topic. Whether you're a seasoned professional seeking to enhance your expertise or a newcomer eager to embark on a new career path, this courseoffers the tools and insights necessary to unlock your true potential. This Electrical Machines for Electrical Engineering course holds a prestigious CPD accreditation, symbolising exceptional quality. The materials, brimming with knowledge, are regularly updated, ensuring their relevance. This Teaching Assistant course promises not just education, but an evolving learning experience. Engage with this extraordinary collection, and prepare to enrich your personal and professional development. Enrol in Electrical Machines for Electrical Engineering today and embark on a transformative journey that will set you up for success in the dynamic and evolving world of Electrical Machines for Electrical Engineering. Unleash your potential and take the first step towards a rewarding and fulfilling career! Learning Outcomes By the end of this Electrical Machines for Electrical Engineering course, you will: Gain a deep understanding of the fundamental principles and theories in Electrical Machines for Electrical Engineering. Acquire the ability to analyse and solve complex problems related to the topic critically. Enhance your communication and teamwork skills, which are essential for collaborating effectively in professional settings. Apply the learned concepts in Electrical Machines for Electrical Engineeringto drive innovation and make strategic decisions within your field. Curriculum of Electrical Machines for Electrical Engineering: Unit 1: Introduction to Electric Machines Module 1- Introduction to Electric Machines Module 2- Types of Electric Machines and Principle of Electrical Generation Unit 2: DC Machines Module 1- Importance and Construction of DC Machines Module 2- Armature Winding and EMF Equation Module 3-Solved Example 1 Module 4-Solved Example 2 Module 5-Solved Example 3 Module 6-Solved Example 4 Module 7-Separately Excited DC Machine Module 8-Shunt and Series DC Machines Module 9-Solved Example 1 on Separately Excited DC Machine Module 10-Solved Example 2 on Separately Excited DC Machine Module 11-Solved Example 3 on Shunt Generator Module 12-Solved Example 4 on Shunt Generator Module 13-Solved Example 5 on Series DC Generator Module 14-Types and Applications of Compound DC Motors Module 15- Torque-Speed Characteristics and Speed Control of Separately Excited DC Motor Module 16- Torque-Speed Characteristics of Series DC Motor Module 17-Solved Example 1 on Speed Control Module 18-Solved Example 2 on Speed Control Module 19- Starting of DC Machine Module 20- Armature Reaction in DC Machines Module 21-Losses in DC Machines Unit 3: Construction of Transformers Module 1- What is a Transformer Module 2- Importance of Transformer Module 3-Iron Core of Transformer Module 4- Magnetic Circuit Inside Transformer Module 5- Windings of Transformer Module 6- Why are Windings Made of Copper Module 7- Classification of Windings Module 8- Insulating Material and Transformer Oil Module 9- Conservator of Transformer Module 10- Breather of Transformer Module 11- Bushings of Transformer Module 12- Tap Changer of Transformer Module 13- Cooling Tubes of Transformer Module 14- Buchholz Relay of Transformer Module 15- Explosion Vent Module 16- Methods of Cooling Module 17-Types of Transformers Module 18- Power Transformer and Distribution Transformer Module 19- Single Phase Core Type Transformer Module 20-Single Phase Shell Type Transformer Module 21- 3 Phase Core Type Module 22- 3 Phase Shell Type Module 23- Comparison between Shell and Core CSA Module 24- Comparison between Shell and Core Type Module 25- Notes Module 26-Video Explaining The Components in 3D and Real Life Unit 4: Fundamentals of Magnetic Circuits Module 1- Introduction to Magnetic Circuits Module 2- Induced Emf and Current Module 3- Ampere Right Hand Rule Module 4- Magnetic Circuit and Important Definitions Module 5- Linear and Non Linear Materials Module 6-Flux Linkage and Reluctance Module 7- Analogy between Electric and Magnetic Circuits Module 8- Fringing Effect Module 9- Example 1 Magnetic Circuits Module 10- Example 2 Module 11- Example 3 Module 12- Application on Magnetic Circuit - Transformers Unit 5: Theoretical Part on Transformers Module 1- Introduction to Transformers Module 2- Construction of Transformer Module 3-Theory of Operation Module 4- Ideal Transformer Module 5-Non Ideal Transformer Module 6- Effect of Loading on Transformer Module 7- Transformer Regulation Module 8- Transformer Losses Module 9- Transformer Efficiency Module 10- Transformer Rating Module 11- Question 1 Module 12- Question 2 Module 13- Question 3 Module 14- Example 1 Module 15- Voltage Relation of Transformer Module 16- Transformer Exact Equivalent Circuit Module 17- Concept of Refereeing Module 18- Approximate Equivalent Circuit Unit 6: Synchronous Machines Module 1- Construction and Principle of Operation of Synchronous Generator Module 2- Principle of Operation of Synchronous Motor Module 3- Equivalent Circuit and Phasor Diagram of Non Salient Synchronous Machine Module 4-Solved Example 1 on Non Salient Machine Module 5-Solved Example 2 on Non Salient Machine Module 6-Solved Example 3 on Non Salient Machine Module 7- Solved Example 4 on Non Salient Machine Module 8-Solved Example 5 on Non Salient Machine Module 9-Solved Example 6 on Non Salient Machine Module 10- Equivalent Circuit and Phasor Diagram of Salient Synchronous Machine Module 11-Solved Example 1 on Salient Machine Module 12- Solved Example 2 on Salient Machine Module 13-Solved Example 3 on Salient Machine Module 14- Parallel Operation of Two Generators Module 15- Synchronization of Machine with Grid Unit 7: Induction Machines Module 1- Construction and Theory of Operation of Induction Machines Module 2- Equivalent Circuit and Power Flow in Induction Motor Module 3- Torque-Speed Characteristics of Induction Motor Module 4- Solved Example 1 on Induction Motor Module 5-Solved Example 2 on Induction Motor Module 6-Solved Example 3 on Induction Motor Module 7-Solved Example 4 on Induction Motor Module 8-Solved Example 5 on Induction Motor Module 9- Methods of Speed Control of Induction Motor Module 10- Methods of Starting of Induction Motor Module 11-Solved Example on Motor Starter Module 12- Principle of Operation of Doubly Fed Induction Generator Module 13-Self Excited Induction Generator This Electrical Machines for Electrical Engineering course holds a prestigious CPD accreditation, symbolising exceptional quality. The materials, brimming with knowledge, are regularly updated, ensuring their relevance. This Teaching Assistant course promises not just education but an evolving learning experience. Engage with this extraordinary collection, and prepare to enrich your personal and professional development. CPD 15 CPD hours / points Accredited by CPD Quality Standards Who is this course for? Professionals looking to expand their knowledge and skills in Electrical Machines for Electrical Engineering. Recent graduates seeking to enter the job market with a competitive edge. Individuals considering a career change into Electrical Machines for Electrical Engineering. Entrepreneurs aiming to gain insights into Electrical Machines for Electrical Engineering to boost their business strategies. Anyone interested in broadening their understanding of Electrical Machines for Electrical Engineering for personal or professional growth. Requirements No prior knowledge or experience is required to enrol in this Electrical Machines for Electrical Engineering course. Career path Completing Electrical Machines for Electrical Engineering can give you the initial boost to a world of exciting career opportunities.

Electrical Machines for Electrical Engineering
Delivered Online On Demand14 hours
£12

MATLAB Simulink for Electrical Engineering

By NextGen Learning

In the dynamic realm of Electrical Engineering, a myriad of opportunities beckons. This ever-evolving field is pivotal to our modern world and the driving force behind groundbreaking innovations, offering unparalleled career prospects for aspiring engineers. With the rise of intelligent technologies and sustainable energy solutions, expertise in Electrical Engineering has become more vital than ever. For those eager to ride this wave and harness the potential within, our curated MATLAB Simulink for Electrical Engineering bundle is your gateway. It equips learners with the essential skills and knowledge, ensuring they're well-prepared to navigate and contribute to the bright future of Electrical Engineering. Dive in and embrace the exciting challenges and rewards that await. Learners can get theoretical knowledge and skills from these eight courses to succeed in this field. Embark on your Electrical Engineering journey today. Equip yourself with industry-leading knowledge and skills. Don't miss out - enrol now and power up your future The CPD Accredited Eight Courses Are: Course 1: MATLAB Simulink for Electrical Power Engineering. Course 2: Trigonometry for Electrical Engineering. Course 3: ETAP Power System Analysis For Electrical Engineers. Course 4: PLC Programming Using Logixpro Simulator. Course 5: Digital Electric Circuits & Intelligent Electrical Devices. Course 6: Power Electronics for Electrical Engineering Course 7: Electric Circuits for Electrical Engineering. Course 8: Electrical Machines for Electrical Engineering. Learning outcomes: By Completing this MATLAB Simulink for Electrical Engineering bundle, you will be able to: Gain expertise in Electrical Power Engineering simulations. Understand core maths essential for electrical systems with our Electrical Engineering bundle. Harness ETAP for efficient system analysis with our Electrical Engineering bundle. Master automation using Logixpro Simulator. Grasp digital circuits and intelligent device applications. Delve into the design and operations of core electrical machinery. MATLAB Simulink for Electrical Power Engineering: Delve into the heart of Electrical Power Engineering simulations. This course offers theoretical knowledge with MATLAB Simulink, enabling learners to model, analyse, and design electrical systems, making it an indispensable tool for every Electrical Engineer. Trigonometry for Electrical Engineering: This specialised module demystifies the crucial mathematical principles behind electrical systems. Gain an in-depth understanding of trigonometric concepts tailored to solve real-world Electrical Engineering challenges. ETAP Power System Analysis For Electrical Engineers: Equip yourself with the mastery of ETAP, the leading power system modelling and analysis software. Dive into detailed load flow studies, fault calculations, and stability analysis, ensuring efficient system design and operations. PLC Programming Using Logixpro Simulator: Step into the world of automation with a keen focus on PLC programming. Harness the Logixpro Simulator to design, test, and optimise automated systems, which is pivotal for modern Electrical Engineering projects. Digital Electric Circuits & Intelligent Electrical Devices: Navigate the digital transformation in Electrical Engineering. Understand the principles behind digital circuitry, and explore the frontier of intelligent devices shaping the future of Electrical Engineering. Power Electronics for Electrical Engineering: Delve into the dynamic realm of power electronics. Grasp the design, analysis, and application of electronic circuits used to control and convert electric power, solidifying your expertise in this vital Electrical Engineering domain. Electric Circuits for Electrical Engineering: Build a robust foundation with this comprehensive guide to electric circuits. From basic principles to advanced circuit analysis, this course ensures you're well-prepared to design and troubleshoot in any Electrical Engineering scenario. Electrical Machines for Electrical Engineering: Embark on a journey through the core of Electrical Engineering machinery. Dive deep into the design, operation, and application of transformers, motors, and generators, ensuring a well-rounded understanding of the machines that power our world. Show off your new skills with a certificate of completion. After successfully completing the course, you can order your CPD Accredited Certificates as proof of your achievement. Please Note: The delivery charge inside the U.K. is £4.99, and international students have to pay £8.99. CPD 90 CPD hours / points Accredited by CPD Quality Standards Who is this course for? The target audience for the MATLAB Simulink for Electrical Engineering course is: Aspiring Engineers: Beginners eager to dive into Electrical Engineering. Professionals: Experts aiming to update or broaden their skills. Students: Pursuing Electrical Engineering academically. Researchers: Seeking in-depth tools and methodologies. Innovators: Exploring Electrical Engineering for product development. Hobbyists: Passionate about electronics and electrical systems. After Completing this course, you can later enrol in these courses: Level 3 Award in the Initial Verification and Certification of Electrical Installations Level 3 Electrotechnical Qualification Requirements Without any formal requirements, you can delightfully enrol in this MATLAB Simulink for Electrical Power Engineering course. Just get a device with internet connectivity, and you are ready to start your learning journey. Thus, complete this Electrical Engineering course at your own pace. Career path Our MATLAB Simulink for Electrical Engineering course will prepare you for a range of careers, including: Electricians Junior Electrical Engineer Control Systems Engineer Power Systems Analyst Digital Circuit Designer Power Electronics Engineer

MATLAB Simulink for Electrical Engineering
Delivered Online On Demand4 days
£12

Trigonometry for Electrical Engineering

By Compete High

Course Title: Trigonometry for Electrical Engineering   Overview: Unlock the Power of Trigonometry in Electrical Engineering! Are you ready to elevate your understanding of trigonometry and apply it directly to the field of Electrical Engineering? Our comprehensive course, 'Trigonometry for Electrical Engineering,' is meticulously designed to empower aspiring and seasoned electrical engineers alike, providing a deep dive into the fundamental principles of trigonometry and its practical applications in the realm of electrical systems.   Key Features: Relevance to Electrical Engineering:Tailored specifically for electrical engineering professionals and students, this course focuses on real-world applications of trigonometry in electrical circuits, signal processing, and communication systems. Practical Problem Solving:Gain hands-on experience by solving practical problems and exercises designed to bridge the gap between theoretical knowledge and real-world scenarios encountered in electrical engineering projects. Comprehensive Curriculum:Covering essential trigonometric concepts such as sine, cosine, tangent, and their applications in AC circuits, phasors, and impedance, this course ensures a thorough understanding of trigonometry within an electrical engineering context. Interactive Learning:Engage with dynamic and interactive learning materials, including video lectures, simulations, and quizzes, to reinforce your understanding and foster a practical approach to problem-solving. Industry-Experienced Instructors:Learn from seasoned electrical engineers who bring a wealth of industry experience, sharing insights and best practices to help you apply trigonometric concepts effectively in your professional endeavors. Project-Based Assessments:Showcase your skills through project-based assessments that simulate real-world challenges in electrical engineering, allowing you to demonstrate your mastery of trigonometry in practical applications. Flexible Learning Schedule:Access course materials at your own pace, enabling you to balance your professional commitments while advancing your knowledge in trigonometry for electrical engineering.   Who Should Enroll: Electrical engineering students seeking a comprehensive understanding of trigonometry. Electrical engineers looking to strengthen their skills and enhance problem-solving capabilities. Professionals working in related fields interested in applying trigonometry to electrical systems.   Take the Next Step: Enroll in 'Trigonometry for Electrical Engineering' today and unlock the potential to excel in your electrical engineering career. Whether you're a student aspiring to build a strong foundation or a seasoned professional aiming to stay at the forefront of industry advancements, this course is your gateway to mastering trigonometry in the context of electrical engineering. Don't miss out on this opportunity to elevate your skills and open doors to new possibilities in the dynamic field of electrical engineering! Course Curriculum Introduction To trigonometry For Electrical Engineering Course Introduction To trigonometry For Electrical Engineering Course 00:00 Point Lines Angles Point Lines Angles 00:00 Intersecting Parallel Lines Triangles Intersecting Parallel Lines Triangles 00:00 Triangles Triangles 00:00 The Pythagorean Theorem The Pythagorean Theorem 00:00 Unique Triangles Ratios Unique Triangles Ratios 00:00 Trig Functions Tangents Trig Functions Tangents 00:00 The Unit Circle The Unit Circle 00:00 Trig Identities Trig Identities 00:00 Trig Identities Trig Identities 00:00 Double Half Angle Formulas Double Half Angle Formulas 00:00 Trig Functions In The Time Domain Draft Lesson 00:00

Trigonometry for Electrical Engineering
Delivered Online On Demand5 hours 5 minutes
£25