• Professional Development
  • Medicine & Nursing
  • Arts & Crafts
  • Health & Wellbeing
  • Personal Development

213 Electrical Design courses

Electric Circuits for Electrical Engineering

5.0(10)

By Apex Learning

Overview This comprehensive course on Electric Circuits for Electrical Engineering  will deepen your understanding on this topic. After successful completion of this course you can acquire the required skills in this sector. This Electric Circuits for Electrical Engineering comes with accredited certification from CPD, which will enhance your CV and make you worthy in the job market. So enrol in this course today to fast track your career ladder. How will I get my certificate? You may have to take a quiz or a written test online during or after the course. After successfully completing the course, you will be eligible for the certificate. Who is This course for? There is no experience or previous qualifications required for enrolment on this Electric Circuits for Electrical Engineering. It is available to all students, of all academic backgrounds. Requirements Our Electric Circuits for Electrical Engineering is fully compatible with PC's, Mac's, Laptop, Tablet and Smartphone devices. This course has been designed to be fully compatible with tablets and smartphones so you can access your course on Wi-Fi, 3G or 4G. There is no time limit for completing this course, it can be studied in your own time at your own pace. Career Path Learning this new skill will help you to advance in your career. It will diversify your job options and help you develop new techniques to keep up with the fast-changing world. This skillset will help you to- Open doors of opportunities Increase your adaptability Keep you relevant Boost confidence And much more! Course Curriculum 7 sections • 135 lectures • 10:29:00 total length •Module 1- What Is an Electric Circuit: 00:02:00 •Module 2-System of Units: 00:07:00 •Module 3- What Is an Electric Charge: 00:05:00 •Module 4- What Is an Electric Current: 00:08:00 •Module 5-Example 1: 00:09:00 •Module 6- Example 2: 00:02:00 •Module 7- Example 3: 00:13:00 •Module 8- What Is Voltage: 00:07:00 •Module 9- What Is Power: 00:06:00 •Module 10- What Is Energy: 00:04:00 •Module 11- Example 4: 00:03:00 •Module 12- Example 5: 00:02:00 •Module 13- Dependent and Independent Sources: 00:05:00 •Module 14- Example 6 Part 1: 00:04:00 •Module 15- Example 6 Part 2: 00:01:00 •Module 16- Application 1 Cathode Ray Tube: 00:04:00 •Module 17-Example 7: 00:04:00 •Module 18- Application 2 Electricity Bills: 00:02:00 •Module 19- Example 8: 00:03:00 •Module 1- Introduction to Basic Laws: 00:01:00 •Module 2- Definition of Resistance: 00:06:00 •Module 3- Ohm's Law: 00:02:00 •Module 4- Types of Resistances: 00:06:00 •Module 5- Open and Short Circuit: 00:05:00 •Module 6- Definition of Conductance: 00:04:00 •Module 7-Example 1: 00:01:00 •Module 8-Example 2: 00:01:00 •Module 9- Example 3: 00:03:00 •Module 10- Branch, Node and Loops: 00:07:00 •Module 11- Series and Parallel Connection: 00:04:00 •Module 12- KCL: 00:04:00 •Module 13- KVL: 00:03:00 •Module 14- Example 4: 00:05:00 •Module 15- Example 5: 00:02:00 •Module 16- Example 6: 00:06:00 •Module 17- Series Resistors and Voltage Division: 00:07:00 •Module 18-Parallel Resistors and Current Division: 00:12:00 •Module 19- Analogy between Resistance and Conductance: 00:07:00 •Module 20-Example 7: 00:03:00 •Module 21-Example 8: 00:04:00 •Module 22- Introduction to Delta-Wye Connection: 00:06:00 •Module 23-Delta to Wye Transformation: 00:05:00 •Module 24- Wye to Delta Transformation: 00:07:00 •Module 25-Example 9: 00:03:00 •Module 26- Example 10: 00:15:00 •Module 27- Application Lighting Bulbs: 00:03:00 •Module 28-Example 11: 00:05:00 •Module 1- Introduction to Methods of Analysis: 00:02:00 •Module 2- Nodal Analysis with No Voltage Source: 00:15:00 •Module 3-Example 1: 00:04:00 •Module 4-Cramer's Method: 00:04:00 •Module 5-Nodal Analysis with Voltage Source: 00:07:00 •Module 6- Example 2: 00:02:00 •Module 7- Example 3: 00:13:00 •Module 8-Mesh Analysis with No Current Source: 00:10:00 •Module 9-Example 4: 00:04:00 •Module 10- Example 5: 00:06:00 •Module 11-Mesh Analysis with Current Source: 00:07:00 •Module 12-Example 6: 00:08:00 •Module 13-Nodal Vs Mesh Analysis: 00:04:00 •Module 14-Application DC Transistor: 00:04:00 •Module 15-Example 7: 00:04:00 •Module 1-Introduction to Circuit theorems: 00:02:00 •Module 2-Linearity of Circuit: 00:07:00 •Module 3-Example 1: 00:04:00 •Module 4-Superposition Theorem: 00:07:00 •Module 5- Example 2: 00:04:00 •Module 6-Example 3: 00:06:00 •Module 7-Source Transformation: 00:08:00 •Module 8-Example 4: 00:05:00 •Module 9-Example 5: 00:03:00 •Module 10-Thevenin Theorem: 00:10:00 •Module 11-Example 6: 00:06:00 •Module 12-Example 7: 00:05:00 •Module 13- Norton's Theorem: 00:05:00 •Module 14-Example 8: 00:04:00 •Module 15-Example 9: 00:05:00 •Module 16-Maximum Power Transfer: 00:05:00 •Module 17-Example 10: 00:03:00 •Module 18-Resistance Measurement: 00:05:00 •Module 19-Example 11: 00:01:00 •Module 20-Example 12: 00:04:00 •Module 21-Summary: 00:05:00 •Module 1-Introduction to Operational Amplifiers: 00:03:00 •Module 2-Construction of Operational Amplifiers: 00:07:00 •Module 3-Equivalent Circuit of non Ideal Op Amp: 00:10:00 •Module 4-Vo Vs Vd Relation Curve: 00:04:00 •Module 5-Example 1: 00:09:00 •Module 6-Ideal Op Amp: 00:07:00 •Module 7- Example 2: 00:04:00 •Module 8-Inverting Amplifier: 00:05:00 •Module 9-Example 3: 00:02:00 •Module 10-Example 4: 00:02:00 •Module 11-Non Inverting Amplifier: 00:08:00 •Module 12-Example 5: 00:03:00 •Module 13-Summing Amplifier: 00:05:00 •Module 14-Example 6: 00:02:00 •Module 15-Difference amplifier: 00:06:00 •Module 16-Example 7: 00:08:00 •Module 17-Cascaded Op Amp Circuits: 00:06:00 •Module 18-Example 8: 00:04:00 •Module 19-Application Digital to Analog Converter: 00:06:00 •Module 20-Example 9: 00:04:00 •Module 21-Instrumentation Amplifiers: 00:05:00 •Module 22-Example 10: 00:01:00 •Module 23-Summary: 00:04:00 •Module 1-Introduction to Capacitors and Inductors: 00:02:00 •Module 2-Capacitor: 00:06:00 •Module 3-Capacitance: 00:02:00 •Module 4-Voltage-Current Relation in Capacitor: 00:03:00 •Module 5-Energy Stored in Capacitor: 00:06:00 •Module 6-DC Voltage and Practical Capacitor: 00:02:00 •Module 7-Example 1: 00:01:00 •Module 8-Example 2: 00:01:00 •Module 9-Example 3: 00:02:00 •Module 10-Equivalent Capacitance of Parallel Capacitors: 00:02:00 •Module 11-Equivalent Capacitance of Series Capacitors: 00:03:00 •Module 12-Example 4: 00:02:00 •Module 13-Definition of Inductors: 00:06:00 •Module 14-Definition of Inductance: 00:03:00 •Module 15-Voltage-Current Relation in Inductor: 00:03:00 •Module 16-Power and Energy Stored in Inductor: 00:02:00 •Module 17-DC Source and Inductor: 00:04:00 •Module 18-Example 5: 00:02:00 •Module 19-Series Inductors: 00:03:00 •Module 20-Parallel Inductors: 00:04:00 •Module 21-Example 6: 00:01:00 •Module 22-Small Summary to 3 Basic Elements: 00:02:00 •Module 23-Example 7: 00:05:00 •Module 24-Application Integrator: 00:05:00 •Module 25-Example 8: 00:03:00 •Module 26-Application Differentiator: 00:02:00 •Module 27-Example 9: 00:06:00 •Module 28-Summary: 00:05:00 •Assignment - Reporting and Data: 00:00:00

Electric Circuits for Electrical Engineering
Delivered Online On Demand10 hours 29 minutes
£12

Electrical Engineering for Electrical Substations

5.0(10)

By Apex Learning

Overview This comprehensive course on Electrical Engineering for Electrical Substations will deepen your understanding on this topic. After successful completion of this course you can acquire the required skills in this sector. This Electrical Engineering for Electrical Substations comes with accredited certification from CPD, which will enhance your CV and make you worthy in the job market. So enrol in this course today to fast track your career ladder. How will I get my certificate? You may have to take a quiz or a written test online during or after the course. After successfully completing the course, you will be eligible for the certificate. Who is This course for? There is no experience or previous qualifications required for enrolment on this Electrical Engineering for Electrical Substations. It is available to all students, of all academic backgrounds. Requirements Our Electrical Engineering for Electrical Substations is fully compatible with PC's, Mac's, Laptop, Tablet and Smartphone devices. This course has been designed to be fully compatible with tablets and smartphones so you can access your course on Wi-Fi, 3G or 4G. There is no time limit for completing this course, it can be studied in your own time at your own pace. Career Path Having these various qualifications will increase the value in your CV and open you up to multiple sectors such as Business & Management, Admin, Accountancy & Finance, Secretarial & PA, Teaching & Mentoring etc. Course Curriculum 5 sections • 30 lectures • 05:05:00 total length •Module 1: Introduction To Electrical Substation: 00:06:00 •Module 2: Construction of Electrical Substation and Transformers: 00:09:00 •Module 3: Instrument Transformers and Principle of Operation of Trip Circuit: 00:13:00 •Module 4: Types Of Circuit Breakers And Fuses: 00:23:00 •Module 5: Types of Relays According to Function, Construction and Time Characteristics: 00:06:00 •Module 6: Definition of Busbar and Its Schemes: 00:17:00 •Module 7: Construction of Underground Cables: 00:10:00 •Module 8: Construction of Overhead Transmission Lines: 00:15:00 •Module 9: Comparison between Underground Cables and Overhead Transmission Lines: 00:05:00 •Module 10: Types of Switches In Power System and Substations: 00:08:00 •Module 11: Importance of Capacitor Banks in Power System: 00:08:00 •Module 12: Other Important Components in Electrical Substation: 00:07:00 •Module 13: Classification of Substations: 00:05:00 •Module 14: Relation between Voltage and Substations: 00:02:00 •Module 15: Air Insulated Substation and Gas Insulated Substation: 00:09:00 •Module 16: Importance of Ring Main Unit in Power System: 00:07:00 •Module 17:Extra Images: 00:01:00 •Module 1: Effect of Current on Human Body: 00:09:00 •Module 2: Types of Electric Hazards: 00:08:00 •Module 3: Classification of Earthing Systems: 00:24:00 •Module 4: Components of Earthing System: 00:09:00 •Module 5: Design and Resistance of Earthing Electrode: 00:12:00 •Module 6: Design and Resistance of Earthing Conductor: 00:13:00 •Module 7: Earth Resistance by Megger and Three Point Method: 00:03:00 •Module 8: Design Earthing or Ground Grid Using ETAP: 00:21:00 •Module 1: What Ip or Ingress Protection: 00:05:00 •Module 2: Selection of Busbars in Electrical Substation: 00:11:00 •Module 3: Design of Substations: 00:19:00 •Module 4: Single Line Diagram of 66 to 11kv Substation: 00:20:00 •Assignment - Electrical Engineering for Electrical Substations: 00:00:00

Electrical Engineering for Electrical Substations
Delivered Online On Demand5 hours 5 minutes
£12

Electrical Engineering DC Circuit Analysis

5.0(10)

By Apex Learning

Overview This comprehensive course on Electrical Engineering DC Circuit Analysis will deepen your understanding on this topic. After successful completion of this course you can acquire the required skills in this sector. This Electrical Engineering DC Circuit Analysis comes with accredited certification, which will enhance your CV and make you worthy in the job market. So enrol in this course today to fast track your career ladder. How will I get my certificate? •You may have to take a quiz or a written test online during or after the course. After successfully completing the course, you will be eligible for the certificate. Who is This course for? There is no experience or previous qualifications required for enrolment on this Electrical Engineering DC Circuit Analysis. It is available to all students, of all academic backgrounds. Requirements Our Electrical Engineering DC Circuit Analysis is fully compatible with PC's, Mac's, Laptop, Tablet and Smartphone devices. This course has been designed to be fully compatible with tablets and smartphones so you can access your course on Wi-Fi, 3G or 4G. There is no time limit for completing this course, it can be studied in your own time at your own pace. Career Path Having these various qualifications will increase the value in your CV and open you up to multiple sectors such as Business & Management, Admin, Accountancy & Finance, Secretarial & PA, Teaching & Mentoring etc. Course Curriculum 2 sections • 11 lectures • 01:26:00 total length •Module 01: Course Introduction: 00:02:00 •Module 02: Introduction to Electrical Engineering: 00:07:00 •Module 03: Circuit Analysis Introduction: 00:16:00 •Module 04: Circuit Analysis Techniques: 00:04:00 •Module 05: Ohm's Law: 00:05:00 •Module 06: Kirchhoff Current Law: 00:21:00 •Module 07: Kirchhoff Voltage Law: 00:13:00 •Module 08: Nodal Analysis: 00:08:00 •Module 09: Mesh Analysis: 00:09:00 •Module 10: Importance of Circuit Analysis: 00:01:00 •Assignment -Electrical Engineering DC Circuit Analysis: 00:00:00

Electrical Engineering DC Circuit Analysis
Delivered Online On Demand1 hour 26 minutes
£12

Power Electronics for Electrical Engineering

5.0(10)

By Apex Learning

Overview This comprehensive course on Power Electronics for Electrical Engineering will deepen your understanding on this topic. After successful completion of this course you can acquire the required skills in this sector. This Power Electronics for Electrical Engineering comes with accredited certification from CPD, which will enhance your CV and make you worthy in the job market. So enrol in this course today to fast track your career ladder. How will I get my certificate? You may have to take a quiz or a written test online during or after the course. After successfully completing the course, you will be eligible for the certificate. Who is This course for? There is no experience or previous qualifications required for enrolment on this Power Electronics for Electrical Engineering. It is available to all students, of all academic backgrounds. Requirements Our Power Electronics for Electrical Engineering is fully compatible with PC's, Mac's, Laptop, Tablet and Smartphone devices. This course has been designed to be fully compatible with tablets and smartphones so you can access your course on Wi-Fi, 3G or 4G. There is no time limit for completing this course, it can be studied in your own time at your own pace. Career Path Having these various qualifications will increase the value in your CV and open you up to multiple sectors such as Business & Management, Admin, Accountancy & Finance, Secretarial & PA, Teaching & Mentoring etc. Course Curriculum 6 sections • 105 lectures • 15:01:00 total length •Module 1- Introduction to Power Electronics: 00:13:00 •Module 2- Uncontrolled Switches: 00:17:00 •Module 3- What is the Benefit of Diode: 00:06:00 •Module 4- Semi-Controlled Switches Part 1: 00:09:00 •Module 5- Semi-Controlled Switches Part 2: 00:14:00 •Module 6- Semi-Controlled Switches Part 3: 00:05:00 •Module 7- What is the Benefit of Thyristor: 00:05:00 •Module 8- Fully Controlled Switches Part 1: 00:17:00 •Module 9- Fully Controlled Switches Part 2: 00:10:00 •Module 10- Fully Controlled Switches Part 3: 00:12:00 •Module 1- Overview on Rectifiers: 00:02:00 •Module 2- Rectifier Definition: 00:01:00 •Module 3- Half Wave Uncontrolled Rectifier with R Load: 00:21:00 •Module 4- Example on Half Wave Uncontrolled Rectifier with R Load Part 1: 00:06:00 •Module 5- Example on Half Wave Uncontrolled Rectifier with R Load Part 2: 00:07:00 •Module 6- Half Wave Uncontrolled Rectifier with RL Load: 00:10:00 •Module 7- Derivation of the Discontinuous Current in R-L Load: 00:08:00 •Module 8- Freewheeling Diode (Commutation Diode): 00:03:00 •Module 9- Half Wave R-L Load with FWD: 00:09:00 •Module 10- Difference Between Continuous and Discontinuous Mode in RL Load: 00:07:00 •Module 11- Half Wave RL Load with FWD Continuous Mode: 00:06:00 •Module 12- Example on Half Wave Rectifier with FWD: 00:07:00 •Module 13- Bridge Full Wave Uncontrolled Rectifier Part 1: 00:07:00 •Module 14- Bridge Full Wave Uncontrolled Rectifier Part 2: 00:05:00 •Module 15- Quick Revision on Bridge Full Wave Uncontrolled Rectifier: 00:06:00 •Module 16- Firing Angle: 00:02:00 •Module 17- Half Wave Controlled Rectifier R Load: 00:05:00 •Module 18- Half Wave Controlled Rectifier R-L Load: 00:04:00 •Module 19- Half Controlled R-L Load with FWD: 00:06:00 •Module 20- Example 1: 00:07:00 •Module 21- Example 2: 00:08:00 •Module 22- Example 3: 00:13:00 •Module 23- Example 4: 00:09:00 •Module 24- Example 5: 00:05:00 •Module 25- Fully Controlled Bridge Rectifier Part 1: 00:06:00 •Module 26- Fully Controlled Bridge Rectifier Part 2: 00:06:00 •Module 27- Quick Revision on Bridge Full Wave Controlled Rectifier: 00:02:00 •Module 28- Example 6: 00:08:00 •Module 29- Half Controlled Bridge Rectifier: 00:08:00 •Module 30- Half Controlled Bridge Rectifier with FWD: 00:05:00 •Module 31- Example 7: 00:06:00 •Module 32- Example 8: 00:07:00 •Module 33- Performance Parameters: 00:04:00 •Module 34- Power Factor: 00:04:00 •Module 1- Introduction to AC Choppers: 00:02:00 •Module 2- Definition of AC Choppers: 00:05:00 •Module 3- Switching Techniques in AC Choppers: 00:06:00 •Module 4- Applications on AC Choppers: 00:03:00 •Module 5- Types of AC Choppers: 00:02:00 •Module 6- AC Chopper with R Load: 00:14:00 •Module 7- Example 1 on AC Chopper with R Load: 00:06:00 •Module 8- Example 2 on AC Chopper with R Load: 00:04:00 •Module 9- AC Chopper with L Load Part 1: 00:13:00 •Module 10- AC Chopper with L Load Part 2: 00:06:00 •Module 11- Example on AC Chopper with L Load: 00:08:00 •Module 12- AC Chopper with RL Series Load: 00:20:00 •Module 13- Example on AC Chopper with RL Series Load: 00:07:00 •Module 14- AC Chopper with RL Parallel Load: 00:25:00 •Module 15- Example on AC Chopper with RL Parallel Load: 00:06:00 •Module 16- AC Chopper with Pure Capacitive Load: 00:14:00 •Module 17- Example on AC Chopper with Pure Capacitive Load: 00:04:00 •Module 18- AC Chopper Loaded by Heavy Rectifier: 00:06:00 •Module 19- AC Chopper Loaded by an AC Motor with Sinusoidal Back Emf: 00:12:00 •Module 20- Example on AC Chopper Loaded by an AC Motor with Sinusoidal Back Emf: 00:08:00 •Module 21- Integral Cycle Control: 00:11:00 •Module 22- Example on Integral Cycle Control: 00:04:00 •Module 1- Introduction to DC Choppers: 00:02:00 •Module 2- Definition and Application of DC Choppers: 00:05:00 •Module 3- Step down DC Chopper with R Load: 00:12:00 •Module 4- Example on Step Dwon DC Chopper with R Load: 00:08:00 •Module 5- Generation of Duty Cycle: 00:09:00 •Module 6- Switching Techniques: 00:03:00 •Module 7- Step Down DC Chopper with RLE Load Part 1: 00:19:00 •Module 8- Step Down DC Chopper with RLE Load Part 2: 00:15:00 •Module 9- Example 1 on Step Down DC Chopper with RLE Load: 00:13:00 •Module 10- Example 2 on Step Down DC Chopper with RLE Load: 00:02:00 •Module 11- Step Up DC Chopper with R or RL Load: 00:09:00 •Module 12- Step Up DC Chopper with RE Load: 00:15:00 •Module 13- Example on Step Up DC Chopper with RE Load: 00:20:00 •Module 14- Buck Regulator Part 1: 00:16:00 •Module 15- Buck Regulator Part 2: 00:17:00 •Module 16- Example on Buck Regulator: 00:03:00 •Module 17- Boost Regulator: 00:23:00 •Module 18- Example on Boost Regulator: 00:06:00 •Module 19- Buck Boost Converter: 00:17:00 •Module 20- Example on Buck-Boost Converter: 00:05:00 •Module 1- Introduction to Inverters: 00:02:00 •Module 2- Definition of Inverters: 00:04:00 •Module 3- Importance and Applications of Inverters: 00:08:00 •Module 4- Single Phase Half Bridge R-Load: 00:15:00 •Module 5- Single Phase Half Bridge RL- Load: 00:08:00 •Module 6- Performance Parameters of an Inverter: 00:05:00 •Module 7- Example on Single Phase Half Bridge: 00:10:00 •Module 8- Single Phase Bridge Inverter R- Load: 00:06:00 •Module 9- Single Phase Bridge Inverter RL- Load: 00:07:00 •Module 10- Example on Single Phase Bridge Inverter: 00:06:00 •Module 11- Three Phase Inverters and Obtaining the Line Voltages: 00:15:00 •Module 12- Threee Phase Inverters and Obtaining The Phase Voltages: 00:17:00 •Module 13- Example on Three Phase Inverters: 00:16:00 •Module 14- Single Pulse Width Modulation: 00:13:00 •Module 15- Multiple Pulse Width Modulation: 00:13:00 •Module 16- Example on Multiple Pulse Width Modulation: 00:04:00 •Module 17- Sinusoidal Pulse Width Modulation: 00:16:00 •Module 18- Industrial Inverter: 00:03:00 •Assignment - Power Electronics for Electrical Engineering: 3 days

Power Electronics for Electrical Engineering
Delivered Online On Demand15 hours 1 minutes
£12

PAT Testing, Inspection & Electrical Safety - 8 Courses Bundle

By NextGen Learning

***A Better Pathway for Rapid Growth! Limited Time Opportunity; Hurry Up!*** Have you ever pondered the wonders of the electrical realm and its numerous applications? How much do you truly know about the intricate circuit that powers our modern lives? Introducing our exclusive bundle that dives deep into the vast ocean of electrical knowledge, with a special emphasis on PAT testing. Equip yourself with an in-depth understanding of how electronics, high-voltage circuits, and electric metres operate. With eight meticulously designed courses, this bundle promises to illuminate your path in the electrical domain. Embracing this knowledge can not only elevate your skills but can also set you apart in the competitive market. Empower yourself today! The Eight CPD Accredited courses that the bundle includes are: Course 1: Portable Appliance Testing (PAT) Course 2: Electronic & Electrical Devices Maintenance & Troubleshooting Course 3: Protection and Control of High Voltage Power Circuits Course 4: Electrical Machines for Electrical Engineering Course 5: Electric Power Metering for Single and Three Phase Systems Course 6: Digital Electric Circuits & Intelligent Electrical Devices Course 7: Fundamentals of Electricity and Circuits Course 8: Advanced Electrical Safety Learning Outcomes: Upon completion of the PAT Testing & Inspection Bundle, you will be able to: Grasp the principles and techniques of PAT testing. Understand the nuances of electrical device maintenance. Decode the intricacies of high-voltage circuit protection. Explore the mechanisms behind electrical machines. Get a comprehensive overview of electric power metering. Delve into the world of digital electric circuits. Establish a robust foundation in electricity and circuit fundamentals. Prioritise electrical safety with advanced strategies. Portable Appliance Testing (PAT): Delve into the art and science of PAT testing, mastering its techniques and principles. Electronic & Electrical Devices Maintenance & Troubleshooting: Learn the intricacies of maintaining and diagnosing faults in various electronic devices. Protection and Control of High Voltage Power Circuits: Explore the world of high voltage circuits and how to protect and control them effectively. Electrical Machines for Electrical Engineering: Acquaint yourself with the various machines pivotal to electrical engineering and their mechanisms. Electric Power Metering for Single and Three-Phase Systems: Dive deep into power metering systems, understanding single- and three-phase setups. Digital Electric Circuits & Intelligent Electrical Devices: Embark on a journey into the future of electric circuits and the intelligence within modern electrical devices. Fundamentals of Electricity and Circuits: Establish a solid foundation in understanding electricity and the basic tenets of circuits. Advanced Electrical Safety: Priorities safety with insights into advanced strategies and techniques. CPD 90 CPD hours / points Accredited by CPD Quality Standards Who is this course for? The target audience for the PAT Testing & Inspection Bundle is: Individuals keen on expanding their knowledge of electrical systems. Engineering students seeking to enhance their academic understanding. Professionals in the electrical domain wanting a refresher. Aspiring electricians keen on understanding the theoretical aspects. Tech enthusiasts with a penchant for electronics and circuits. Requirements Without any formal requirements, you can delightfully enrol in this PAT Testing & Inspection Bundle. Career path Our PAT Testing & Inspection Bundle will prepare you for a range of careers, including: Electrical Technician: £20K - £30K Maintenance Engineer: £25K - £40K Circuit Designer: £30K - £50K Power Systems Analyst: £35K - £55K Electrical Engineering Researcher: £40K - £60K Electronics Device Quality Controller: £35K - £50K Electrical Safety Officer: £30K - £45K Certificates CPD Certificate Of Completion Digital certificate - Included 8 Digital Certificates Are Included With This Bundle CPD Quality Standard Hardcopy Certificate (FREE UK Delivery) Hard copy certificate - £9.99 Hardcopy Transcript: £9.99

PAT Testing, Inspection & Electrical Safety - 8 Courses Bundle
Delivered Online On Demand3 days
£39

Electrical Machines for Electrical Engineering

4.5(3)

By Studyhub UK

Overview Uplift Your Career & Skill Up to Your Dream Job - Learning Simplified From Home! Kickstart your career & boost your employability by helping you discover your skills, talents and interests with our special Electrical Machines for Electrical Engineering Course. You'll create a pathway to your ideal job as this course is designed to uplift your career in the relevant industry. It provides professional training that employers are looking for in today's workplaces. The Electrical Machines for Electrical Engineering Course is one of the most prestigious training offered at StudyHub and is highly valued by employers for good reason. This Electrical Machines for Electrical Engineering Course has been designed by industry experts to provide our learners with the best learning experience possible to increase their understanding of their chosen field. This Electrical Machines for Electrical Engineering Course, like every one of Study Hub's courses, is meticulously developed and well researched. Every one of the topics is divided into elementary modules, allowing our students to grasp each lesson quickly. At StudyHub, we don't just offer courses; we also provide a valuable teaching process. When you buy a course from StudyHub, you get unlimited Lifetime access with 24/7 dedicated tutor support. Why buy this Electrical Machines for Electrical Engineering? Unlimited access to the course for forever Digital Certificate, Transcript, student ID all included in the price Absolutely no hidden fees Directly receive CPD accredited qualifications after course completion Receive one to one assistance on every weekday from professionals Immediately receive the PDF certificate after passing Receive the original copies of your certificate and transcript on the next working day Easily learn the skills and knowledge from the comfort of your home Certification After studying the course materials of the Electrical Machines for Electrical Engineering there will be a written assignment test which you can take either during or at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £5.99. Original Hard Copy certificates need to be ordered at an additional cost of £9.60. Who is this course for? This Electrical Machines for Electrical Engineering course is ideal for Students Recent graduates Job Seekers Anyone interested in this topic People already working in the relevant fields and want to polish their knowledge and skill. Prerequisites This Electrical Machines for Electrical Engineering does not require you to have any prior qualifications or experience. You can just enrol and start learning.This Electrical Machines for Electrical Engineering was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Career path As this course comes with multiple courses included as bonus, you will be able to pursue multiple occupations. This Electrical Machines for Electrical Engineering is a great way for you to gain multiple skills from the comfort of your home. Course Curriculum Unit 1: Introduction to Electric Machines Module 1- Introduction to Electric Machines 00:03:00 Module 2- Types of Electric Machines and Principle of Electrical Generation 00:09:00 Unit 2: DC Machines Module 1- Importance and Construction of DC Machines 00:26:00 Module 2- Armature Winding and EMF Equation 00:40:00 Module 3-Solved Example 1 00:05:00 Module 4-Solved Example 2 00:04:00 Module 5-Solved Example 3 00:07:00 Module 6-Solved Example 4 00:06:00 Module 7-Separately Excited DC Machine 00:21:00 Module 8-Shunt and Series DC Machines 00:25:00 Module 9-Solved Example 1 on Separately Excited DC Machine 00:07:00 Module 10-Solved Example 2 on Separately Excited DC Machine 00:07:00 Module 11-Solved Example 3 on Shunt Generator 00:04:00 Module 12-Solved Example 4 on Shunt Generator 00:07:00 Module 13-Solved Example 5 on Series DC Generator 00:06:00 Module 14-Types and Applications of Compound DC Motors 00:07:00 Module 15- Torque-Speed Characteristics and Speed Control of Separately Excited DC Motor 00:33:00 Module 16- Torque-Speed Characteristics of Series DC Motor 00:08:00 Module 17-Solved Example 1 on Speed Control 00:08:00 Module 18-Solved Example 2 on Speed Control 00:06:00 Module 19- Starting of DC Machine 00:14:00 Module 20- Armature Reaction in DC Machines 00:10:00 Module 21-Losses in DC Machines 00:04:00 Unit 3: Construction of Transformers Module 1- What is a Transformer 00:02:00 Module 2- Importance of Transformer 00:04:00 Module 3-Iron Core of Transformer 00:04:00 Module 4- Magnetic Circuit Inside Transformer 00:05:00 Module 5- Windings of Transformer 00:03:00 Module 6- Why are Windings Made of Copper 00:01:00 Module 7- Classification of Windings 00:05:00 Module 8- Insulating Material and Transformer Oil 00:02:00 Module 9- Conservator of Transformer 00:03:00 Module 10- Breather of Transformer 00:04:00 Module 11- Bushings of Transformer 00:04:00 Module 12- Tap Changer of Transformer 00:03:00 Module 13- Cooling Tubes of Transformer 00:01:00 Module 14- Buchholz Relay of Transformer 00:02:00 Module 15- Explosion Vent 00:02:00 Module 16- Methods of Cooling 00:03:00 Module 17-Types of Transformers 00:03:00 Module 18- Power Transformer and Distribution Transformer 00:05:00 Module 19- Single Phase Core Type Transformer 00:04:00 Module 20-Single Phase Shell Type Transformer 00:05:00 Module 21- 3 Phase Core Type 00:02:00 Module 22- 3 Phase Shell Type 00:01:00 Module 23- Comparison between Shell and Core CSA 00:01:00 Module 24- Comparison between Shell and Core Type 00:01:00 Module 25- Notes 00:03:00 Module 26-Video Explaining The Components in 3D and Real Life 00:05:00 Unit 4: Fundamentals of Magnetic Circuits Module 1- Introduction to Magnetic Circuits 00:02:00 Module 2- Induced Emf and Current 00:04:00 Module 3- Ampere Right Hand Rule 00:04:00 Module 4- Magnetic Circuit and Important Definitions 00:06:00 Module 5- Linear and Non Linear Materials 00:03:00 Module 6-Flux Linkage and Reluctance 00:04:00 Module 7- Analogy between Electric and Magnetic Circuits 00:06:00 Module 8- Fringing Effect 00:02:00 Module 9- Example 1 Magnetic Circuits 00:07:00 Module 10- Example 2 00:03:00 Module 11- Example 3 00:06:00 Module 12- Application on Magnetic Circuit - Transformers 00:04:00 Unit 5: Theoretical Part on Transformers Module 1- Introduction to Transformers 00:02:00 Module 2- Construction of Transformer 00:02:00 Module 3-Theory of Operation 00:04:00 Module 4- Ideal Transformer 00:05:00 Module 5-Non Ideal Transformer 00:02:00 Module 6- Effect of Loading on Transformer 00:03:00 Module 7- Transformer Regulation 00:03:00 Module 8- Transformer Losses 00:03:00 Module 9- Transformer Efficiency 00:05:00 Module 10- Transformer Rating 00:02:00 Module 11- Question 1 00:01:00 Module 12- Question 2 00:02:00 Module 13- Question 3 00:01:00 Module 14- Example 1 00:01:00 Module 15- Voltage Relation of Transformer 00:04:00 Module 16- Transformer Exact Equivalent Circuit 00:06:00 Module 17- Concept of Refereeing 00:04:00 Module 18- Approximate Equivalent Circuit 00:02:00 Unit 6: Synchronous Machines Module 1- Construction and Principle of Operation of Synchronous Generator 00:29:00 Module 2- Principle of Operation of Synchronous Motor 00:24:00 Module 3- Equivalent Circuit and Phasor Diagram of Non Salient Synchronous Machine 00:29:00 Module 4-Solved Example 1 on Non Salient Machine 00:05:00 Module 5-Solved Example 2 on Non Salient Machine 00:11:00 Module 6-Solved Example 3 on Non Salient Machine 00:07:00 Module 7- Solved Example 4 on Non Salient Machine 00:04:00 Module 8-Solved Example 5 on Non Salient Machine 00:07:00 Module 9-Solved Example 6 on Non Salient Machine 00:03:00 Module 10- Equivalent Circuit and Phasor Diagram of Salient Synchronous Machine 00:39:00 Module 11-Solved Example 1 on Salient Machine 00:09:00 Module 12- Solved Example 2 on Salient Machine 00:05:00 Module 13-Solved Example 3 on Salient Machine 00:10:00 Module 14- Parallel Operation of Two Generators 00:17:00 Module 15- Synchronization of Machine with Grid 00:10:00 Unit 7: Induction Machines Module 1- Construction and Theory of Operation of Induction Machines 00:27:00 Module 2- Equivalent Circuit and Power Flow in Induction Motor 00:23:00 Module 3- Torque-Speed Characteristics of Induction Motor 00:20:00 Module 4- Solved Example 1 on Induction Motor 00:08:00 Module 5-Solved Example 2 on Induction Motor 00:06:00 Module 6-Solved Example 3 on Induction Motor 00:06:00 Module 7-Solved Example 4 on Induction Motor 00:18:00 Module 8-Solved Example 5 on Induction Motor 00:13:00 Module 9- Methods of Speed Control of Induction Motor 00:27:00 Module 10- Methods of Starting of Induction Motor 00:21:00 Module 11-Solved Example on Motor Starter 00:15:00 Module 12- Principle of Operation of Doubly Fed Induction Generator 00:11:00 Module 13-Self Excited Induction Generator 00:08:00 Assignment Assignment - Electrical Machines for Electrical Engineering 00:00:00

Electrical Machines for Electrical Engineering
Delivered Online On Demand14 hours 20 minutes
£10.99

MATLAB Simulink for Electrical Power Engineering

5.0(10)

By Apex Learning

Overview This comprehensive course on MATLAB Simulink for Electrical Power Engineering will deepen your understanding on this topic. After successful completion of this course you can acquire the required skills in this sector. This MATLAB Simulink for Electrical Power Engineering comes with accredited certification from CPD, which will enhance your CV and make you worthy in the job market. So enrol in this course today to fast track your career ladder. How will I get my certificate? You may have to take a quiz or a written test online during or after the course. After successfully completing the course, you will be eligible for the certificate. Who is This course for? There is no experience or previous qualifications required for enrolment on this MATLAB Simulink for Electrical Power Engineering. It is available to all students, of all academic backgrounds. Requirements Our MATLAB Simulink for Electrical Power Engineering is fully compatible with PC's, Mac's, Laptop, Tablet and Smartphone devices. This course has been designed to be fully compatible with tablets and smartphones so you can access your course on Wi-Fi, 3G or 4G. There is no time limit for completing this course, it can be studied in your own time at your own pace. Career Path Having these various qualifications will increase the value in your CV and open you up to multiple sectors such as Business & Management, Admin, Accountancy & Finance, Secretarial & PA, Teaching & Mentoring etc. Course Curriculum 8 sections • 47 lectures • 13:24:00 total length •Module 1- Solving One Non Linear Equation in MATLAB Using Fzero Function: 00:15:00 •Module 2-Example 1 on Solving Multiple Non Linear Equations in MATLAB Using Fsolve Function: 00:15:00 •Module 3- Example 2 on Solving Multiple Non Linear Equations in Matlab Using Fsolve: 00:13:00 •Module 4-Application Multi Level Inverter Part 1: 00:25:00 •Module 5- Application Multi Level Inverter Part 2: 00:05:00 •Module 1-Introduction to MATLAB Simulations Using Simulink: 00:04:00 •Module 2-Half Wave Uncontrolled Rectifier with R Load Principle of Operation: 00:21:00 •Module 3- Half Wave Controlled Rectifier R Load Principle of Operation: 00:05:00 •Module 4-Simulation of Half Wave Controlled Rectifier Using Simulink In Matlab: 00:26:00 •Module 5- Principle of Operation of Fully Controlled Bridge Rectifier Part 1: 00:06:00 •Module 6- Principle of Operation of Fully Controlled Bridge Rectifier Part 2: 00:06:00 •Module 7-Simulation of Bridge Controlled Rectifier: 00:16:00 •Module 8-AC Chopper with R Load Principle of Operation: 00:14:00 •Module 9- Simulation of AC Chopper with R and RL Loads in MATLAB: 00:11:00 •Module 10- Buck Regulator Principle of Operation Part 1: 00:16:00 •Module 11-Buck Regulator Principle of Operation Part 2: 00:17:00 •Module 12-Simulation of Buck Regulator in MATLAB: 00:14:00 •Module 13-Boost Regulator Principle of Operation: 00:23:00 •Module 14- Simulation of Boost Regulator in MATLAB: 00:12:00 •Module 15-Buck-Boost Regulator Principle of Operation: 00:17:00 •Module 16- Simulation of Buck-Boost Regulator: 00:09:00 •Module 17- Single Phase Half Bridge R-Load: 00:15:00 •Module 18- Single Phase Half Bridge RL-Load: 00:08:00 •Module 19-Simulation of Single Phase Half Bridge Inverter: 00:18:00 •Module 20-Single Phase Bridge Inverter R-Load: 00:06:00 •Module 21-Single Phase Bridge Inverter RL-Load: 00:07:00 •Module 22-Simulation of Single Phase Bridge Inverter: 00:10:00 •Module 23-Three Phase Inverters and Obtaining The Line Voltages: 00:15:00 •Module 24-Three Phase Inverters and Obtaining The Phase Voltages: 00:17:00 •Module 25-Simulation of Three Phase Inverter: 00:17:00 •Module 26-Simulation of Charging and Discharging Capacitor Using Matlab: 00:10:00 •Module 1-Separately Excited DC Machine: 00:21:00 •Module 2-DC Motor Modelling without Load Using Simulink in MATLAB: 00:25:00 •Module 3-DC Motor Modelling with Load Using Simulink in MALTAB: 00:23:00 •Module 4-DC Motor Block Simulation Using Power Library in MATLAB: 00:16:00 •Module 1-Construction and Principle of Operation of Synchronous Generator: 00:29:00 •Module 2-Equivalent Circuit and Phasor Diagram of Non Salient Synchronous Machine: 00:29:00 •Module 3-Equivalent Circuit and Phasor Diagram of Salient Synchronous Machine: 00:39:00 •Module 4-Simulation of Synchronous Machine Connected to Small Power System: 00:38:00 •Module 1-Construction and Theory of Operation of Induction Machines: 00:27:00 •Module 2-Equivalent Circuit and Power Flow in Induction Motor: 00:23:00 •Module 3-Torque-Speed Characteristics of Induction Motor: 00:20:00 •Module 4- Simulation of Induction Motor or Asynchronous Motor Using Simulink: 00:33:00 •Module 1- Importing Data from PSCAD Program for Fault Location Detection to MATLAB Program: 00:37:00 •Module 1-How to Implement PID Controller in Simulink of MATLAB: 00:14:00 •Module 2-Tuning a PID Controller In MATLAB Simulink: 00:17:00 •Assignment - MATLAB Simulink for Electrical Power Engineering: 00:00:00

MATLAB Simulink for Electrical Power Engineering
Delivered Online On Demand13 hours 24 minutes
£12

Electrical Power System and High Voltage Engineering

5.0(10)

By Apex Learning

Overview This comprehensive course on Electrical Power System and High Voltage Engineering will deepen your understanding on this topic. After successful completion of this course you can acquire the required skills in this sector. This Electrical Power System and High Voltage Engineering comes with accredited certification, which will enhance your CV and make you worthy in the job market. So enrol in this course today to fast track your career ladder. How will I get my certificate? You may have to take a quiz or a written test online during or after the course. After successfully completing the course, you will be eligible for the certificate. Who is This course for? There is no experience or previous qualifications required for enrolment on this Electrical Power System and High Voltage Engineering. It is available to all students, of all academic backgrounds. Requirements Our Electrical Power System and High Voltage Engineering is fully compatible with PC's, Mac's, Laptop, Tablet and Smartphone devices. This course has been designed to be fully compatible with tablets and smartphones so you can access your course on Wi-Fi, 3G or 4G. There is no time limit for completing this course, it can be studied in your own time at your own pace. Career Path Having these various qualifications will increase the value in your CV and open you up to multiple sectors such as Business & Management, Admin, Accountancy & Finance, Secretarial & PA, Teaching & Mentoring etc. Course Curriculum 1 sections • 8 lectures • 03:45:00 total length •Module 1- Introduction to Electrical Power System and High Voltage: 00:25:00 •Module 2- Types of High Voltage: 00:17:00 •Module 3- Generation of High Voltage AC at Power Frequency: 00:30:00 •Module 4- Generation of High Voltage High Frequency AC: 00:14:00 •Module 5- Generation of High Voltage Impulse Part 1: 00:37:00 •Module 6- Generation of High Voltage Impulse Part 2: 00:14:00 •Module 7- Generation of High Voltage DC Part 1: 00:43:00 •Module 8- Generation of High Voltage DC Part 2: 00:45:00

Electrical Power System and High Voltage Engineering
Delivered Online On Demand3 hours 45 minutes
£12

Renewable Enegry and Solar Design Course - CPD Accredited

4.8(9)

By Skill Up

Grasp solar design essentials in our Renewable Energy and Solar Design Course. Learn PV systems, simulations, and design tools for a sustainable future.

Renewable Enegry and Solar Design Course - CPD Accredited
Delivered Online On Demand11 hours 45 minutes
£25

Electrical Engineering With Electric Circuits

4.5(3)

By Studyhub UK

Ignite your passion for the electrifying world with our course on 'Electrical Engineering With Electric Circuits'. Envision the realm where electricity comes alive, weaving intricate patterns that power our world. Journey with us as we illuminate foundational concepts, delve deep into circuit analysis, and unveil the magic behind operational amplifiers. With each unit, you'll unravel the mysteries of capacitors, inductors, and the fundamental laws governing them, forging a path towards mastery in electrical engineering. Learning Outcomes Develop a solid understanding of the foundational concepts in electrical engineering. Discover and apply the basic laws governing electric circuits. Employ various methods to analyse complex electrical circuits. Understand the principles behind circuit theorems and operational amplifiers. Gain proficiency in working with capacitors and inductors. Why choose this Electrical Engineering With Electric Circuits course? Unlimited access to the course for a lifetime. Opportunity to earn a certificate accredited by the CPD Quality Standards after completing this course. Structured lesson planning in line with industry standards. Immerse yourself in innovative and captivating course materials and activities. Assessments are designed to evaluate advanced cognitive abilities and skill proficiency. Flexibility to complete the Electrical Engineering With Electric Circuits Course at your own pace, on your own schedule. Receive full tutor support throughout the week, from Monday to Friday, to enhance your learning experience. Who is this Electrical Engineering With Electric Circuits course for? Aspiring electrical engineers seeking foundational knowledge. Technicians aiming for a deeper understanding of electric circuits. University students studying electrical engineering as a major. Hobbyists keen on diving into the world of circuits and electronics. Professionals in related fields aiming to expand their skill set. Career path Electrical Engineer: £25,000 - £55,000 Circuit Designer: £28,000 - £50,000 Operational Amplifier Specialist: £30,000 - £54,000 Electronics Technician: £20,000 - £40,000 System Analyst (Electrical Circuits): £32,000 - £57,000 Researcher in Electrical Engineering: £28,000 - £52,000 Prerequisites This Electrical Engineering With Electric Circuits does not require you to have any prior qualifications or experience. You can just enrol and start learning.This Electrical Engineering With Electric Circuits was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Certification After studying the course materials, there will be a written assignment test which you can take at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £4.99 Original Hard Copy certificates need to be ordered at an additional cost of £8. Course Curriculum Unit 1- Basic Concepts Module 1- What Is an Electric Circuit 00:02:00 Module 2-System of Units 00:07:00 Module 3- What Is an Electric Charge 00:05:00 Module 4- What Is an Electric Current 00:08:00 Module 5-Example 1 00:01:00 Module 6- Example 2 00:05:00 Module 7- Example 3 00:02:00 Module 8- What Is Voltage 00:07:00 Module 9- What Is Power 00:06:00 Module 10- What Is Energy 00:04:00 Module 11- Example 4 00:03:00 Module 12-Example 5 00:03:00 Module 13- Dependent and Independent Sources 00:05:00 Module 14- Example 6 Part 1 00:04:00 Module 15- Example 6 Part 2 00:01:00 Module 16- Application 1 Cathode Ray Tube 00:04:00 Module 17-Example 7 00:04:00 Module 18- Application 2 Electricity Bills 00:02:00 Module 19- Example 8 00:03:00 Unit 2- Basic Laws Module 1- Introduction to Basic Laws 00:01:00 Module 2- Definition of Resistance 00:06:00 Module 3- Ohm's Law 00:02:00 Module 4- Types of Resistances 00:06:00 Module 5- Open and Short Circuit 00:05:00 Module 6- Definition of Conductance 00:04:00 Module 7- Example 1 00:02:00 Module 8- Example 2 00:03:00 Module 9-Example 3 00:05:00 Module 10- Branch, Node and Loops 00:07:00 Module 11- Series and Parallel Connection 00:04:00 Module 12- KCL 00:04:00 Module 13- KVL 00:03:00 Module 14- Example 4 00:05:00 Module 15- Example 5 00:02:00 Module 16- Example 6 00:06:00 Module 17- Series Resistors and Voltage Division 00:07:00 Module 18-Parallel Resistors and Current Division 00:12:00 Module 19- Analogy between Resistance and Conductance 00:07:00 Module 20-Example 7 00:03:00 Module 21-Example 8 00:04:00 Module 22- Introduction to Delta-Wye Connection 00:06:00 Module 23-Delta to Wye Transformation 00:05:00 Module 24- Wye to Delta Transformation 00:07:00 Module 25-Example 9 00:03:00 Module 26- Example 10 00:15:00 Module 27- Application Lighting Bulbs 00:03:00 Module 28-Example 11 00:05:00 Unit 3- Methods of Analysis Module 1- Introduction to Methods of Analysis 00:02:00 Module 2- Nodal Analysis with No Voltage Source 00:15:00 Module 3-Example 1 00:04:00 Module 4-Cramer's Method 00:04:00 Module 5-Nodal Analysis with Voltage Source 00:07:00 Module 6- Example 2 00:02:00 Module 7- Example 3 00:13:00 Module 8-Mesh Analysis with No Current Source 00:10:00 Module 9-Example 4 00:04:00 Module 10- Example 5 00:06:00 Module 11-Mesh Analysis with Current Source 00:07:00 Module 12-Example 6 00:08:00 Module 13-Nodal Vs Mesh Analysis 00:04:00 Module 14-Application DC Transistor 00:04:00 Module 15-Example 7 00:04:00 Unit 4- Circuit Theorems Module 1-Introduction to Circuit theorems 00:02:00 Module 2-Linearity of Circuit 00:07:00 Module 3-Example 1 00:04:00 Module 4-Superposition Theorem 00:07:00 Module 5- Example 2 00:04:00 Module 6-Example 3 00:06:00 Module 7-Source Transformation 00:08:00 Module 8-Example 4 00:05:00 Module 9-Example 5 00:03:00 Module 10-Thevenin Theorem 00:10:00 Module 11-Example 6 00:06:00 Module 12-Example 7 00:05:00 Module 13- Norton's Theorem 00:05:00 Module 14-Example 8 00:04:00 Module 15-Example 9 00:05:00 Module 16-Maximum Power Transfer 00:05:00 Module 17-Example 10 00:03:00 Module 18-Resistance Measurement 00:05:00 Module 19-Example 11 00:01:00 Module 20-Example 12 00:04:00 Module 21-Summary 00:05:00 Unit 5- Operational Amplifiers Module 1-Introduction to Operational Amplifiers 00:03:00 Module 2-Construction of Operational Amplifiers 00:07:00 Module 3-Equivalent Circuit of non Ideal Op Amp 00:10:00 Module 4-Vo Vs Vd Relation Curve 00:04:00 Module 5-Example 1 00:09:00 Module 6-Ideal Op Amp 00:07:00 Module 7- Example 2 00:04:00 Module 8-Inverting Amplifier 00:05:00 Module 9-Example 3 00:02:00 Module 10-Example 4 00:02:00 Module 11-Non Inverting Amplifier 00:08:00 Module 12-Example 5 00:03:00 Module 13-Summing Amplifier 00:05:00 Module 14-Example 6 00:02:00 Module 15-Difference amplifier 00:06:00 Module 16-Example 7 00:08:00 Module 17-Cascaded Op Amp Circuits 00:06:00 Module 18-Example 8 00:04:00 Module 19-Application Digital to Analog Converter 00:06:00 Module 20-Example 9 00:04:00 Module 21-Instrumentation Amplifiers 00:05:00 Module 22-Example 10 00:01:00 Module 23-Summary 00:04:00 Unit 6- Capacitors and Inductors Module 1-Introduction to Capacitors and Inductors 00:02:00 Module 2-Capacitor 00:06:00 Module 3-Capacitance 00:02:00 Module 4-Voltage-Current Relation in Capacitor 00:03:00 Module 5-Energy Stored in Capacitor 00:06:00 Module 6-DC Voltage and Practical Capacitor 00:02:00 Module 7-Example 1 00:01:00 Module 8-Example 2 00:01:00 Module 9-Example 3 00:05:00 Module 10-Equivalent Capacitance of Parallel Capacitors 00:02:00 Module 11-Equivalent Capacitance of Series Capacitors 00:03:00 Module 12-Example 4 00:02:00 Module 13-Definition of Inductors 00:06:00 Module 14-Definition of Inductance 00:03:00 Module 15-Voltage-Current Relation in Inductor 00:03:00 Module 16-Power and Energy Stored in Inductor 00:02:00 Module 17-DC Source and Inductor 00:04:00 Module 18-Example 5 00:02:00 Module 19-Series Inductors 00:03:00 Module 20-Parallel Inductors 00:04:00 Module 21-Example 6 00:01:00 Module 22-Small Summary to 3 Basic Elements 00:02:00 Module 23-Example 7 00:05:00 Module 24-Application Integrator 00:05:00 Module 25-Example 8 00:03:00 Module 26-Application Differentiator 00:02:00 Module 27-Example 9 00:06:00 Module 28-Summary 00:05:00 Assignment Assignment - Electrical Engineering With Electric Circuits 00:00:00

Electrical Engineering With Electric Circuits
Delivered Online On Demand10 hours 22 minutes
£10.99