• Professional Development
  • Medicine & Nursing
  • Arts & Crafts
  • Health & Wellbeing
  • Personal Development

12 Educators providing Courses

BWT UK Limited

bwt uk limited

4.2(31)

High Wycombe

Water is our life elixir and at the same time a limited resource. BWT advocates the sustainable and responsible use of the precious resources of our blue planet. Water is our mission. It was the chemist Henry Cavendish (1731 – 1810), who discovered the composition of water, when he experimented with hydrogen and oxygen and mixed these elements together to create an explosion (oxyhydrogen effect). In 1811 the Italian physician Amedeo Avogadro finally found the H2O formula for water. Although water has a simple molecular structure, it nevertheless has unique physical properties. It is the only element that exists on our planet in a solid, liquid and gaseous aggregate state. It is these special properties that make water so fascinating and so important for all creatures. Water has 775 times the density of air. This fact causes the ‘buoyancy’ effect, which enables us - and most mammals - to swim. Many substances expand when they are subjected to heat and reduce their density at the same time; conversely, they increase their density when cooled down. When a liquid is cooled, the colder part sinks to the bottom. The freezing process of water is the other way round. Water reaches its maximum density at 4 degrees Celsius, which is exactly 0.999973 kg/l. Ice weighs 0.91 kg/l – which is the reason why icebergs float. This also explains why frozen water bottles explode and why fish can survive in a frozen lake. They live at the bottom where the water is the heaviest, as the temperature there is approximately 4 degrees Celsius. Water is a very bad heat conductor. This property is of utmost importance for the global climate. Water can actually store a lot of heat, which it then releases again during the cold season. In the warm season, however, it prevents excessive heating. In this way water moderates the differences in temperature. If one cubic centimetre of water evaporates (at approx. 100 degrees Celsius), its volume expands to 1243 cubic centimetres (vapour pressure) - a process that formed the basis of the construction of the steam engine; this machine eventually gave rise to the Industrial Revolution. The physical and chemical properties of water make it a universal solvent and means of transport, which is integrated into all cycles of nature, both micro- and macroscopic. Without water, for example, there would be no circulation of nitrogen or phosphorous - both essential elements in the biosphere - as there is no way for the corresponding ions to be transported. Water can dissolve salts and feed these in dissolved form to plants. Plants then use these ions as nutrients and release the water they don’t need for their nitrogen metabolism into the atmosphere. This small water cycle is as important as the large one - without it, and therefore without water, there would be no life.

Courses matching "Hydrogen"

Show all 61

Hydrogen Production with Integrated CO2 Capture and Geological Storage (CCS) – Shaping A Sustainable Hydrogen Ecosystem

By EnergyEdge - Training for a Sustainable Energy Future

Discover the future of sustainable energy with EnergyEdge's expert-led training on hydrogen production, CO2 capture, and geological storage. Shape a greener world today!

Hydrogen Production with Integrated CO2 Capture and Geological Storage (CCS) – Shaping A Sustainable Hydrogen Ecosystem
Delivered In-PersonFlexible Dates
£1,899 to £1,999

Large Scale Hydrogen Production – Electrolyser Technologies & Electrolysis Interfaces

By EnergyEdge - Training for a Sustainable Energy Future

Unlock the future of energy with EnergyEdge's comprehensive classroom training on large-scale hydrogen production & electrolysis interfaces. Join us to revolutionize energy solutions!

Large Scale Hydrogen Production – Electrolyser Technologies & Electrolysis Interfaces
Delivered In-PersonFlexible Dates
£2,299 to £2,399

Join us for a micro-learning course in hydrogen for transport and learn about this potentially game-changing technology which brings the world a step closer to achieving net-zero emissions. Part of our Net Zero Transport Fundamentals Collection, where we look to provide bite-sized training on all the core technologies and topics relating to decarbonising the transport industry.

Hydrogen for Road Transport
Delivered Online On Demand3 hours
£299

Integrating Hydrogen with Renewable Power – Virtual Instructor Led Training (VILT)

By EnergyEdge - Training for a Sustainable Energy Future

Dive into the world of hydrogen integration with renewable power through EnergyEdge's course. Enroll in our virtual instructor-led training today!

Integrating Hydrogen with Renewable Power – Virtual Instructor Led Training (VILT)
Delivered OnlineFlexible Dates
£1,099 to £1,199

Green Hydrogen Finance Simulation from Investment to Monetization – Virtual Instructor Led Training (VILT)

By EnergyEdge - Training for a Sustainable Energy Future

Discover the future of green hydrogen finance with EnergyEdge. Join our virtual training to explore investment strategies and monetization opportunities.

Green Hydrogen Finance Simulation from Investment to Monetization – Virtual Instructor Led Training (VILT)
Delivered In-PersonFlexible Dates
£1,599 to £1,699

Hydrogen – Technology, Economics and Business Cases – Virtual Instructor Led Training (VILT)

By EnergyEdge - Training for a Sustainable Energy Future

Gain insights into hydrogen technology, economics, and business cases with EnergyEdge's virtual instructor-led training course. Register now to secure your spot!

Hydrogen – Technology, Economics and Business Cases – Virtual Instructor Led Training (VILT)
Delivered In-PersonFlexible Dates
£1,399 to £1,599

Hydrogen Sulfide Training

By Compete High

🌟 Discover the Power of Knowledge with Hydrogen Sulfide Training! 🚧 Are you ready to unlock the secrets of safety in hazardous environments? Dive into our comprehensive Hydrogen Sulfide Training course, designed to equip you with essential knowledge and skills to navigate the dangers of hydrogen sulfide exposure. Join us on a journey where safety meets expertise, empowering you to protect yourself and others in potentially life-threatening situations.   🛡️ Why Hydrogen Sulfide Training? Hydrogen sulfide (H2S) is a colorless, highly toxic gas commonly found in industries such as oil and gas, wastewater treatment, and chemical manufacturing. Exposure to hydrogen sulfide can pose serious health risks, including respiratory issues, neurological damage, and even death. By undergoing Hydrogen Sulfide Training, you'll gain the knowledge and skills needed to recognize, assess, and mitigate the risks associated with hydrogen sulfide exposure, ensuring the safety of yourself and your colleagues.   🎓 Benefits of Taking the Course: Safety Awareness: Gain a comprehensive understanding of the hazards associated with hydrogen sulfide exposure, empowering you to make informed decisions and take appropriate precautions in hazardous environments. Risk Mitigation: Learn strategies for identifying and assessing hydrogen sulfide risks, as well as implementing effective control measures to minimize exposure and prevent accidents. Emergency Preparedness: Enhance your ability to respond to hydrogen sulfide emergencies with confidence, knowing how to safely evacuate, provide first aid, and coordinate emergency response efforts. Compliance: Stay compliant with industry regulations and standards governing hydrogen sulfide safety, reducing the risk of fines, penalties, and legal liabilities for your organization. Career Advancement: Position yourself as a valuable asset in industries where hydrogen sulfide exposure is a concern, opening up opportunities for career advancement and specialization in safety-related roles.   🔍 Who is This For? Industrial Workers: Those working in industries such as oil and gas, chemical manufacturing, wastewater treatment, and agriculture where hydrogen sulfide exposure is common. Safety Professionals: Safety officers, supervisors, and managers responsible for ensuring workplace safety and compliance with regulations. Emergency Responders: Firefighters, paramedics, and other emergency personnel who may encounter hydrogen sulfide emergencies in the field. Students and Researchers: Individuals studying environmental science, occupational health, or related fields who want to deepen their understanding of hydrogen sulfide hazards.   🛠️ Career Path: Upon completing Hydrogen Sulfide Training, you'll be equipped with valuable skills and knowledge that can lead to various career paths, including: Safety Specialist: Specialize in hydrogen sulfide safety and risk management, working to ensure the safety of workers in hazardous environments. Environmental Health and Safety (EHS) Manager: Oversee safety programs and protocols within organizations, including managing risks associated with hydrogen sulfide exposure. Industrial Hygienist: Conduct assessments and implement controls to protect workers from exposure to hazardous substances, including hydrogen sulfide. Emergency Response Coordinator: Coordinate emergency response efforts in the event of hydrogen sulfide incidents, ensuring a swift and effective response to protect lives and property.   📚 FAQs (Frequently Asked Questions):   Q: What is hydrogen sulfide, and why is it dangerous? A: Hydrogen sulfide is a colorless, highly toxic gas with a characteristic odor of rotten eggs. It is commonly found in industries such as oil and gas, wastewater treatment, and chemical manufacturing. Exposure to hydrogen sulfide can pose serious health risks, including respiratory issues, neurological damage, and even death. Q: Who should take Hydrogen Sulfide Training? A: Hydrogen Sulfide Training is suitable for anyone working in industries where hydrogen sulfide exposure is a concern, including industrial workers, safety professionals, emergency responders, and students studying related fields. Q: What topics are covered in the course curriculum? A: The course curriculum covers essential topics such as the properties and hazards of hydrogen sulfide, risk assessment and mitigation strategies, emergency response procedures, and regulatory compliance requirements. Q: How long does the course take to complete? A: The duration of the course varies depending on the learning format and pace of the participant. Typically, the course can be completed in a few hours to a few days. Q: Is the course certification recognized? A: Yes, upon successful completion of the course, participants will receive a certificate of completion, which is widely recognized in industries where hydrogen sulfide safety is a concern.   🌐 Secure Your Future with Hydrogen Sulfide Training! Don't wait until it's too late - invest in your safety and the safety of those around you by enrolling in Hydrogen Sulfide Training today. With the knowledge and skills gained from this course, you'll be empowered to navigate hazardous environments with confidence and peace of mind. Your safety is our priority - join us on this transformative journey now! 🚀🛡️🌟 Course Curriculum Module 1_ Introduction to Hydrogen Sulfide Introduction to Hydrogen Sulfide 00:00 Module 2_ Sources and Occurrences of Hydrogen Sulfid Sources and Occurrences of Hydrogen Sulfid 00:00 Module 3_ Health Effects of Hydrogen Sulfide. Health Effects of Hydrogen Sulfide. 00:00 Module 4_ Regulations and Standards for Hydrogen Sul Regulations and Standards for Hydrogen Sul 00:00 Module 5_ Hydrogen Sulfide Management and Control Hydrogen Sulfide Management and Control 00:00 Module 6_ Hydrogen Sulfide Training and Education Hydrogen Sulfide Training and Education 00:00

Hydrogen Sulfide Training
Delivered Online On Demand6 hours
£25

Clean Hydrogen Derivatives - Ammonia, Methanol and Synthetic Hydrocarbon - Virtual Instructor Led Training (VILT)

By EnergyEdge - Training for a Sustainable Energy Future

Elevate your expertise in clean hydrogen derivatives - ammonia, methanol, and synthetic hydrocarbon with EnergyEdge's course. Enroll now for virtual instructor-led training!

Clean Hydrogen Derivatives - Ammonia, Methanol and Synthetic Hydrocarbon - Virtual Instructor Led Training (VILT)
Delivered in Internationally or OnlineFlexible Dates
£1,099 to £1,199

Hydrogen - Technology, Economics and Business Cases

By EnergyEdge - Training for a Sustainable Energy Future

About this Virtual Instructor Led Training (VILT) Asia Pacific is set to be the largest and fastest growing Hydrogen market globally. This growth is driven by decarbonisation of energy-use, ammonia production and rising demand of fuel cell electric vehicles. Hydrogen as a fuel has outstanding energy carrying capacity and many application possibilities ranging from Petroleum refinery, Ammonia and Methanol production, Transportation and Power generation. Although the current petrochemical market segment will remain strongest in the near future, it is the transport and power sector which spurs the vision of a massive market takeoff in the next decade. The ever-rising share of renewable energies require flexible and scalable storage solutions, which in turn offers many additional revenue streams beyond pure electricity sales. Adding to this the strong impetus towards decarbonization of the transport sector from cars, trucks, trains to ships and even airplanes creates the breed for an exciting and yet untapped market potential. This course aims to clarify and assess the hydrogen business case along its value chain and versatile market applications. Training Objectives Understanding current hydrogen market status and recent developments Major drivers and inhibitors influencing the growth of the market Understanding and comparing various production technology processes Challenges and solutions in transport, distribution and storage of hydrogen Mapping the many petrochemical, energy and transport applications Analyse business cases from around the world and understand their economics Target Audience Project developers Equipment Manufacturers Oil, Gas and Petrochemical sector companies IPPs and utilities Transport sector companies and port operators Policy makers and regulators Investors and lenders Course Level Basic or Foundation Training Methods The VILT will be delivered online in 4 half-day sessions comprising 4 hours per day, including time for lectures, discussion, quizzes and short classroom exercises. Additionally, some self-study will be requested. Participants are invited but not obliged to bring a short presentation (10mins max) on a practical problem they encountered in their work. This will then be explained and discussed during the VILT. A short test or quiz will be held at the end the course. Trainer Your expert course leader is an internationally renowned energy communicator and business educator, focused on the interconnected clean energy transition topics of renewable power, energy storage, energy system electrification and hydrogen. His own independent technology tracking, market assessment and opportunity/risk analysis is delivered to clients through a mix of business advisory work, commissioned content, small-group training (online & in-person), and one-to-one executive coaching (online). In the hydrogen sector, he is currently lead consultant and trainer to the World Hydrogen Leaders network, and writer of their 'This Week in Hydrogen' news column. He is also co-presenter of the 'New Energy Chinwag' podcast, which regularly covers hydrogen-related issues. During more than 15 years as an independent energy expert, he has helped companies from large multinationals to innovative start-ups - totalling assignments in over 30 countries across 5 continents. Most recently, he has presented clean energy training in locations as diverse as Singapore, the UK, South Africa, The Philippines, the USA, Mexico, Spain and Dubai - and, in recent times of course, online to international audiences from across the world. Prior to this, he was Research Director for over 10 years at Informa, a $9 billion business intelligence provider; where he drove new market identification, analysis and project deployment work, and managed teams in the UK and US. He has a strong science background, holding a 1st Class Honours degree in Natural Sciences from the University of Cambridge, a PhD in Earth Sciences and a further Diploma in Economics & Sustainability from the UK's Open University. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information about post training coaching support and fees applicable for this. Accreditions And Affliations

Hydrogen - Technology, Economics and Business Cases
Delivered in Internationally or OnlineFlexible Dates
£1,719 to £1,999

Green Hydrogen Production from Offshore Wind

By EnergyEdge - Training for a Sustainable Energy Future

About this Virtual Instructor Led Training (VILT) Hydrogen will play an increasingly critical role in the future of energy system as it moves forward to supplement and potentially replace fossil fuels in the long run. Offshore wind offers a clean and sustainable renewable resource for green hydrogen production. However, it can also be volatile and presents inherent risks that need to be managed. Even though offshore production of hydrogen has yet to achieve a high state of maturity, many current projects are already dealing with the conditions and effects of offshore production of hydrogen and are grappling with the technological requirements and necessary gas transportation with grid integration. This 2 half-day Virtual Instructor Lead Training (VILT) course will examine the technological options for on-site production of hydrogen by electrolysis (onshore or offshore directly at the platform) as well as the transport of hydrogen (pipeline or ship). This VILT course will also explore the economic considerations and the outlook on future market opportunities. There will be exercises for the participants to work on over the two half-days. This course is delivered in partnership with Fraunhofer IEE. Training Objectives By the end of this VILT course, participants will be able to: Understand the technological attributes and options for green hydrogen production based on electricity from offshore wind. Explore the associated economic analysis for offshore wind hydrogen production, including CAPEX, OPEX, LCOE and LCOH Identify the critical infrastructure and technical configuration required for offshore green hydrogen including transportation networks and grid connectivity Learn from recent findings from current Research & Development projects concerning the differences between onshore and offshore hydrogen production. Target Audience This VILT course is intended: Renewable energy developers and operators Offshore oil & gas operators Energy transport and marine operators Energy policy makers and regulators IPPs and power utilities Training Methods The VILT course will be delivered online in 2 half-day sessions comprising 4 hours per day, including time for lectures, discussion, quizzes and short classroom exercises. Course Duration: 2 half-day sessions, 4 hours per session (8 hours in total). Trainer Trainer 1: Your expert course leader is Director of Energy Process Technology Division at the Fraunhofer Institute for Energy Economics and Energy System Technology, IEE. The research activities of the division link the areas of energy conversion processes and control engineering. The application fields covered are renewable energy technologies, energy storage systems and power to gas with a strong focus on green hydrogen. From 2006 - 2007, he worked as a research analyst of the German Advisory Council on Global Change, WBGU, Berlin. He has extensive training experience from Bachelor and Master courses at different universities as well as in the context of international training activities - recently on hydrogen and PtX for partners in the MENA region and South America. He holds a University degree (Diploma) in Physics, University of Karlsruhe (KIT). Trainer 2: Your expert course leader is Deputy Head of Energy Storage Department at Fraunhofer IEE. Prior to this, he was the director of the Grid Integration Department at SMA Solar Technology AG, one of the world's largest manufacturers of PV power converters. Before joining SMA, he was manager of the Front Office System Planning at Amprion GmbH (formerly RWE TSO), one of the four German transmission system operators. He holds a Degree of Electrical Engineering from the University of Kassel, Germany. In 2003, he finished his Ph.D. (Dr.-Ing.) on the topic of wind power forecasting at the Institute of Solar Energy Supply Technology (now known as Fraunhofer IEE) in Kassel. In 2004, he started his career at RWE TSO with a main focus on wind power integration and congestion management. He is Chairman of the IEC SC 8A 'Grid Integration of Large-capacity Renewable Energy (RE) Generation' and has published several papers about grid integration of renewable energy source and forecasting systems on books, magazines, international conferences and workshops. Trainer 3: Your expert course leader is Deputy Director of the Energy Process Technology division and Head of the Renewable Gases and Bio Energy Department at Fraunhofer IEE. His work is mainly focused on the integration of renewable gases and bioenergy systems into the energy supply structures. He has been working in this field since more than 20 years. He is a university lecturer in national and international master courses. He is member of the scientific advisory council of the European Biogas Association, member of the steering committee of the Association for Technology and Structures in Agriculture, member of the International Advisory Committee (ISAC) of the European Biomass Conference and member of the scientific committees of national bioenergy conferences. He studied mechanical engineering at the University of Darmstadt, Germany. He received his Doctoral degree on the topic of aerothermodynamics of gas turbine combustion chambers. He started his career in renewable energies in 2001, with the topic of biogas fired micro gas turbines. Trainer 4: Your expert course leader has an M. Sc. and she joined Fraunhofer IEE in 2018. In the Division of Energy Process Technology, she is currently working as a Research Associate on various projects related to techno-economic analysis of international PtX projects and advises KfW Development Bank on PtX projects in North Africa. Her focus is on the calculation of electricity, hydrogen and derivative production costs (LCOE, LCOH, LCOA, etc) based on various methods of dynamic investment costing. She also supervises the development of models that simulate different PtX plant configurations to analyze the influence of different parameters on the cost of the final product, and to find the configuration that gives the lowest production cost. She received her Bachelor's degree in Industrial Engineering at the HAWK in Göttingen and her Master's degree in renewable energy and energy efficiency at the University of Kassel. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information about post training coaching support and fees applicable for this. Accreditions And Affliations

Green Hydrogen Production from Offshore Wind
Delivered in Internationally or OnlineFlexible Dates
£1,977 to £2,299