Accredited 1 Day Practitioner Diploma Service Description Accredited 1 Day Practitioner Diploma Course in Pregnancy and Postnatal Massage Pregnancy/Postnatal massage is a little different from a normal Swedish massage and it's performed in side-lying position. Most women who are requesting a massage during pregnancy will do so for a reason. It may be that they are feeling stressed and anxious, or they may be experiencing some of the many discomforts associated with pregnancy. Massage during pregnancy can offer a range of wonderful benefits. Not only can it help a woman to relax, but massage can also help support her body and her mind during a time of major physiological and emotional changes. As well as providing benefits throughout pregnancy, massage can also provide valuable support to a woman and her partner throughout labour and birth. Massage can be enjoyed throughout pregnancy from 14 weeks on, but especially during the second and third trimesters, massage can help support a woman as her body undergoes the various stresses and strains that can develop throughout the latter stages of pregnancy. This course is insurable and accredited by ABT and therapists can offer this therapy either in pregnancy or postnatal as well as to any clients that are unable to lie in supine/prone position. **Prerequisite: Must hold a Level 3 Body Massage and A&P Qualification (or the equivalent). If unsure, please do email us prior to booking so that we can check your qualifications meet the required standard.
About this Training Course Gas wells are the most uncertain hence critical component of any gas production system. A successful gas project relies on a reliable forecast of gas well production and on timely implementation of measures that restore, sustain and improve gas well capacity, and maximize reserves. This 5-day course provides the skills to understand and analyze (changes in) gas well performance, and to select and design those remedial measures. It addresses all four gas well components i.e. reservoir performance, inflow performance, outflow performance and surface performance, individually and combined. In depletion-drive reservoirs, the gas well outflow performance becomes inevitably compromised as the reservoir pressure depletes and the gas rate becomes insufficient to lift liquid water and condensate to surface. This condition is referred to as liquid loading and causes significant loss of well capacity and reserves. This 5-day course provides the means to recognize and predict liquid loading, introduces the deliquification techniques that mitigate liquid loading, and then teaches how to select, design, install and operate the optimum suite of deliquification measures. Training Objectives On completion of this course, participants will be able to: Recognize and model gas well reservoir, inflow, outflow and surface performance Understand and model gas well production forecast and reserves Identify and model gas well performance threats and opportunities, specifically liquid loading and deliquification Select and justify remedial measures that mitigate those threats or realize those opportunities, specifically deliquification measures Understand design, installation and operation of those deliquification measures Target Audience This course is intended for production engineer, surveillance engineer, completion engineer, production/process chemist, reservoir engineer, production programmer, production operator, as well as other professionals responsible for selecting, installing, operating, monitoring and optimizing deliquification. Course Level Basic or Foundation Training Methods This course consists of a series of lectures and exercises. The lectures are interactive with field examples to illustrate models and concepts, where participants are encouraged to contribute their own relevant field examples. The exercises make use of a series of Excel worksheets for model calculations. Participants are invited to implement their own field specific well data. When arranged beforehand, PROSPER gas well performance software can be used as well. This course addresses ways and means to monitor and manage gas well performance and deliquification. It covers the purpose, outcome and benefit of gas well surveillance and capacity measures to assist future surveillance and capacity planning. Specifically, it addresses the selection and implementation of deliquification measures. This course introduces the skills and tools required for periodic review of gas well performance in support of critical business processes Trainer Your expert course leader brings with him 38 years of oil and gas field experience largely within Shell of which 25 years as gas well production engineer. He has covered the full spectrum of activities moving from R&D to green field development to brown field surveillance and optimisation, to become a leading gas well performance and deliquification specialist. He likes to capture the complex reality of gas well inflow, outflow and reservoir performance by means of practical data-driven rules and tools that cover a wide range of conditions i.e. shallow-to-deep, prolific-to-tight, dry-to-wet, green-to-brown, 1-1/2'-to-9-5/8' tubing, and depletion-to-aquifer drive. Before his retirement end 2020, He worked for Shell affiliated oil and gas companies including Shell Malaysia, Petroleum Development Oman, NAM Netherlands and Shell R&D in Netherlands and USA. Since then, he has been active as an independent trainer and consultant, amongst others for Cairn India. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information post training support and fees applicable Accreditions And Affliations
Business Relationship Management Professional (BRMP)® Business Relationship Management (BRM) embodies a set of competencies (knowledge, skills, and behaviors) to foster an effective business value-producing relationship between a service provider and its business partners. The BRM Discipline rests on solid research-based foundations verified and enhanced over a decade of successful implementations in leading organizations across the world. Proven to be equally effective for shared services including Human Resources, Finance, Legal, external service providers and others, BRM practices have enjoyed widespread adaptation in IT. The Business Relationship Management Professional (BRMP) training and certification program provides a foundational understanding of business relationship management (BRM) for individuals at every experience level, with the training and certification designed to provide a solid baseline level of knowledge. In other words, this course provides the 'why' and the 'what' - 'why' business relationship management is important to your organization and 'what' a BRM capability does to add value to your organization. This interactive course, with discussions, partnering activities, and periodic knowledge checks, will provide you with the opportunity to apply learning to your unique organizational situations, creating solutions that you can use immediately upon returning to your workplace. This practical knowledge will allow you to demonstrate immediate value in your role, as well as prepare you for the BRMP Certification exam. What You Will Learn This course provides a foundational understanding of Business Relationship Management. Upon completion of the BRMP® course, participant will be able to demonstrate their understanding: Explain what business relationship management is and the value it provides to an organization Articulate the need for an organization to move beyond traditional goals of profit and products to encompass those that are appropriate for a relationship-centered organization Describe the importance of integrating business relationship management into every element of their organization Define the importance of educating their organization that a mature BRM capability will evolve culture, build partnerships, drive value, and satisfy purpose Apply business relationship management to their organization's triple bottom line of people, purpose, and planet Explain the basic knowledge, skills, and mindsets of the business relationship management role Clarify the core business relationship management approaches, tools, and templates used to achieve results Illustrate the value and impact the BRM capability has on an organization by completing a draft of the BRM Capability Workbook BRM Introduction - The Bigger Picture Why BRM = why now? Relationship-centered organization Theory of 'relationshipism' Triple bottom line BRM defined Activity domains BRM challenges BRM Capability BRM capability framework Organizational purpose and strategy Now-to-new Evolve culture Build partnerships Drive value Satisfy purpose Limitless growth and improvement BRM Capability - Evolve culture Evolve culture framework Purposeful narrative Desired behaviors Influential relationships Personal growth BRM Capability - Build partnerships Build partnerships framework BRM role competency model Relationship maturity and quality Partnering mindsets Relationship discovery Relationship nurturing BRM Capability - Drive value What is value? Types of value Sources of value Drive value framework BRM role competency model Value discovery Value realization Value results BRM Capability - Satisfy purpose Satisfy purpose framework BRM role competency model Through the BRM capability Through the triple bottom line Social value BRM Capability - Wrap-up Evolve culture capability framework Build partnerships capability framework Drive value capability framework Satisfy purpose capability framework BRM Role Our purpose and what we believe Role clarity Single point of focus BRM Code of Ethics BRM Role Competency Model BRM mindset Scope of BRM role BRM role with organizational factors BRM Team Our purpose and what we believe BRM team definition BRM team purpose, mission, and vision Assessing the value of a BRM team Organizing a BRM team Leading a BRM team Transition management Coaching BRMs Closing - BRM Key Learnings Key learnings from each module Closing - BRMP Course Wrap-Up What to do in the next 30/60/90/365 days Digital badge After passing the exam Recap learning objectives Review learning objectives Review expectations Course feedback
Cosmetic College is excited to introduce our new combined training package, designed to provide in-depth expertise in two of the most sought-after cosmetic procedures: microblading and micropigmentation. This unique program combines our VTCT Level 4 Certificate courses in Enhancing Eyebrows with Microblading Techniques and in Micropigmentation, offering a holistic approach to advanced cosmetic training. Course Details: VTCT Level 4 Certificate in Enhancing Eyebrows with Microblading TechniquesDuration: 3 daysContent Overview:Anatomy and physiology for microblading techniques.Health, safety, and hygiene for the microblading sector.Consultation, treatment planning, and preparation.Enhancing eyebrows with microblading techniques.Managing and marketing your microblading business. VTCT Level 4 Certificate in MicropigmentationDuration: [Specify Duration]Content Overview:Advanced techniques in micropigmentation.Comprehensive understanding of color theory and pigment selection.Skin anatomy and physiology relevant to micropigmentation.Health, safety, and hygiene standards for micropigmentation.Client consultation, design, and aftercare procedures. Combined Package Benefits: Comprehensive Skill Set: Gain expertise in both microblading and micropigmentation, enhancing your versatility and employability in the beauty industry. Cost-Effective Learning: Enroll in both courses at a reduced total cost compared to taking the courses separately. Integrated Curriculum: Experience a curriculum that seamlessly integrates the knowledge and skills from both courses, providing a cohesive learning journey. Expert Instructors: Learn from industry experts with extensive experience in cosmetic procedures. Certification and Recognition: Upon successful completion, receive two VTCT Level 4 Certificates, recognised internationally for their high standards in the beauty sector. Who Should Enrol? This package is ideal for beauty professionals looking to expand their service offerings, individuals seeking a career in advanced cosmetic procedures, and those aspiring to become experts in eyebrow enhancement and skin pigmentation techniques.
About this Training Course There are various kinds of geophysical data available. They are separated into seismic and non-seismic (multi-physics) data. Non-seismic or multi-physics data (which includes gravity, magnetics, electrical, electromagnetics, spectral etc - apart from providing complimentary information to seismic) is the main source of information for very shallow subsurface applications such as engineering, mapping pollution, archaeology, geothermal energy, and related areas. This 5 full-day blended course will focus specifically on seismic data which is the main method used in the Oil & Gas industry. In this blended course, participants will be equipped to understand that seismic data represents the movement of the surface, resulting from waves generated by a source, dynamite or vibrator which are reflected by changes in the subsurface rocks. The basic principles of acquisition and processing will be explained and insights into advanced methods, allowing a much more accurate interpretation of seismic data than previously considered possible, will also be provided. This blended course contains an introduction to Machine Learning and its important role in all aspects of seismic acquisition, processing, and interpretation. There is no need to know in detail how the algorithms work internally but it is necessary to know how to use them correctly to achieve optimum results. Training Objectives By attending this course, participants will be able to acquire the following: Obtain an understanding of the strengths and limitations of geophysical methods, specifically seismic, and the costs and risks involved, and how to reduce these. Be able to communicate more effectively with staff in other disciplines. Understand the potential applications of seismic data and know how to formulate the requirements needed for prospect and field evaluation. Gain an awareness of modern seismic technology. Apply the learning in a series of practical, illustrative exercises. Know what types of questions to ask to assess the necessary quality of a seismic project in its role in a sequence of E&P activities Target Audience The blended course is intended for non-geophysicists who have intensive interaction with geophysicists. But it may be of interest to those who want to know about the recent progress made in geophysics, leading to amazing imaging results, which could not be imagined a decade ago. The blended course will bring to the attention of the geologists, petrophysicists and reservoir/petroleum engineers an awareness of how the data they will work with is acquired and processed by the geophysicist. It will introduce the concepts that are of importance in geophysics and thus relevant for non-geophysicists to know and be able to communicate with geophysicists as well as formulate their requests. Course Level Intermediate Trainer Your expert course leader has degree in Geology (University of Leiden), a Master's degree in Theoretical Geophysics (University of Utrecht) and a PhD in Utrecht on 'Full wave theory and the structure of the lower mantle'. This involved forward modelling of P- and S-waves diffracted around the core-mantle boundary and comparison of the frequency-dependent attenuation of the signal with those obtained from major earthquakes observed at long offsets in the 'shadow zone' of the core. These observations were then translated into rock properties of the D' transition zone. After his PhD, he joined Shell Research in The Netherlands to develop methods to predict lithology and pore-fluid based on seismic, petrophysical and geological data. He subsequently worked for Shell in London to interpret seismic data from the Central North Sea Graben. As part of the Quantitative Interpretation assignment, he was also actively involved in managing, processing and interpreting Offshore Seismic Profiling experiments. After his return to The Netherlands, he headed a team for the development of 3D interpretation methods using multi-attribute statistical and pattern recognition analysis on workstations. After a period of Quality Assurance of 'Contractor' software for seismic processing, he became responsible for Geophysics in the Shell Learning Centre. During that period, he was also a part-time professor in Applied Geophysics at the University of Utrecht. From 2001 to 2005, he worked on the development of Potential Field Methods (Gravity, Magnetics) for detecting oil and gas. Finally, he became a champion on the use of EM methods and became involved in designing acquisition, processing and interpretation methods for Marine Controlled Source EM (CSEM) methods. After his retirement from Shell, he founded his own company, specialising in courses on acquisition, processing and interpretation of geophysical data (seismic, gravity, magnetic and electromagnetic data), providing courses to International and National energy companies. In the last couple of years, he became keenly interested in the use of Machine Learning in Geophysics. Apart from incorporating 'Artificial Intelligence' in his courses, he also developed a dedicated Machine Learning course for geophysics. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information post training support and fees applicable Accreditions And Affliations
About this Training Course Reservoir engineering methods, data and models are used in the E&P business to describe and optimise hydrocarbon recovery. This 5 full-day course addresses reservoir engineering concepts and methods to enable cross-disciplinary team work and the smooth exchange of ideas and experience. In this course, participants will gain an in-depth understanding of the fundamentals of reservoir engineering and a broad range of modern reservoir engineering principles and practices for reservoir development and production, including the estimation of oil and gas reserves. The topics covered in this course will be illustrated with practical and actual field cases. Some self-study or reading will be required from participants. Training Objectives By the end of this course, participants will be able to: Describe use of permeability and fluid saturation in reservoir engineering. Explain the assessment of hydrocarbon resources and recoverable reserves estimation. Understand analysis and modelling of fluid behaviour. Explain oil and gas reservoir performance. Describe material balance methods in oil and gas reservoirs. Understand design and analysis of well tests. Understand analysis and production of producing wells and forecasting methods. Describe fluid displacement at the pore and reservoir scale. Explain reservoir simulation approaches. Describe tools for handling the uncertainty in reservoir analysis. Describe various recovery methods from primary to enhanced recovery. Target Audience This course is intended for professionals with prior technical or engineering exposure to exploration and production activities. Targeted participants include geoscientists, production engineers, petrophysicists and petroleum engineers involved with exploration and development of oil & gas reservoirs. The course will also benefit petroleum engineering team leaders as well as IT staff and support staff who work with reservoir engineering, development and production departments. Course Level Basic or Foundation Trainer Your expert course leader is an independent Reservoir Engineering Consultant, providing project consultancy and reservoir engineering training for global customers. He retired from Shell in 2012 and during the last years of his Shell career, he held the Senior Reserves Consultant for the Middle East and Reservoir Engineering Discipline Lead positions. He is a seasoned Petroleum Engineering professional, with global experience in Shell companies and joint ventures (NAM, SSB, SCL, PDO, SKDBV). His technical expertise is in reserves and resource management, reservoir engineering quality assurance, and staff development as well as carbonate reservoirs, modelling and reservoir simulation. PROFESSIONAL EXPERIENCE 2012 to date Independent Reservoir Engineering Consultant Petroleum and reservoir engineering advice, training and services. Reservoir engineering training for major oil companies, engineering firms and other global customers. Assurance of SPE and SEC reserves compliance. Participation in SPE reserves and resources estimation Advanced Technology Workshops both as an organising committee member and as session speaker. 2008 - 2012 Shell International E&P, the Hague, the Netherlands Senior Reserves Consultant for Shell business units and joint ventures in the Middle East Region Assurance of SEC and SPE compliance of reserves and resources. Industry publications and conference contributions a.o. SPE guidelines on probabilistic reserves estimation. 2006 - 2008 Shell E&P Technology Solutions, Rijswijk, the Netherlands Reservoir Engineering Discipline Lead Responsible for Reservoir Engineering in global projects and for staff planning and development (over 60 international Reservoir Engineers). 2001 - 2005 Centre for Carbonate Studies, SQU, Oman / Shell International E&P Applications and Research / Shell Representative Office Oman Petroleum Engineering Manager PE Manager in the Carbonate Research Centre, a joint venture between Sultan Qaboos University in Oman and Shell International. Industrial research projects and teaching on recovery aspects of carbonate reservoir development. 1997 - 2000 Shell International E&P, Rijswijk, the Netherlands Principal Reservoir Engineer Coordination of the NOV subsurface team in Shell Kazakhstan Development BV in 2000. Leading role in Shell Gamechanger project on natural gas hydrates. Acting Shell Group Reserves Co-ordinator in 1997-1998. Facilitation of workshops with government shareholders, including discussions on sensitive reserves issues (BSP Petroleum Unit Brunei, PDO Oman, SPDC government Nigeria). 1992 - 1996 Shell Training Centre, Noordwijkerhout, the Netherlands Reservoir Engineering Programme Training Director Advanced PE training events, QA/QC, design and delivery of courses to Shell staff. 1985 - 1992 Shell International, SIPM, the Hague, The Netherlands Senior Reservoir Engineer Reservoir simulation, integrated reservoir modelling and gas field development and major contributor to the Shell internal Gas Field Planning Tool development. Full field reservoir simulation projects supporting Field Development Plans, operational strategies and unitisation negotiations for Shell Group Operating Companies in the United Kingdom, New Zealand and Egypt. 1984 - 1985 Geological Survey of the Netherlands, Ministry of Economic Affairs Reservoir Engineering Section Head Responsible for Petroleum Engineering advice on oil and gas licences to the Ministry of Economic Affairs. First-hand experience with a government view on resource management. 1976 - 1984 NAM, Assen, The Netherlands and SSB/SSPC, Miri, Malaysia Wellsite Operations Engineer / Operational Reservoir Engineer POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information post training support and fees applicable Accreditions And Affliations
The VTCT Level 4 Certificate in Micropigmentation is a unique qualification offered by VTCT that focuses on the art of cosmetic tattooing. Learn advanced micropigmentation techniques and create breathtaking makeup effects that enhance facial features. Our training program is designed to offer hands-on experience in a realistic working environment. Learn from some of the industry's best without the need for fee-paying clients. Focused on the art of cosmetic tattooing, this course will teach you how to create stunning makeup effects that enhance facial features, using advanced micropigmentation techniques. Develop the necessary skills to perform micropigmentation treatments in a realistic working environment or a real-world setting without the need for fee-paying clients. Train with some of the most experienced beauty training providers in the industry. To enrol in this course, you must have a Level 3 qualification in a relevant discipline. This ensures that you have the necessary foundational knowledge to grasp the advanced techniques covered in this course. Don't wait to make your dreams come true. Enrol in our VTCT Level 4 Certificate in Micropigmentation course and take the first step towards a rewarding career in permanent makeup.
The VTCT Level 4 Certificate in Micropigmentation is a unique qualification offered by VTCT that focuses on the art of cosmetic tattooing. Learn advanced micropigmentation techniques and create breathtaking makeup effects that enhance facial features. Our training program is designed to offer hands-on experience in a realistic working environment. Learn from some of the industry's best without the need for fee-paying clients. Focused on the art of cosmetic tattooing, this course will teach you how to create stunning makeup effects that enhance facial features, using advanced micropigmentation techniques. Develop the necessary skills to perform micropigmentation treatments in a realistic working environment or a real-world setting without the need for fee-paying clients. Train with some of the most experienced beauty training providers in the industry. To enrol in this course, you must have a Level 3 qualification in a relevant discipline. This ensures that you have the necessary foundational knowledge to grasp the advanced techniques covered in this course. Don't wait to make your dreams come true. Enrol in our VTCT Level 4 Certificate in Micropigmentation course and take the first step towards a rewarding career in permanent makeup.
About this Training Course Geomechanical evaluations are about the assessment of deformations and failure in the subsurface due to oil & gas production, geothermal operations, CO2 storage and other operations. All geomechanical evaluations include four types of modelling assumptions, which will be systematically addressed in this training, namely: 1. Geometrical modelling assumption: Impact of structural styles on initial stress and stress redistribution due to operations 2. Formation (or constitutive) behaviour: Linear elastic and non-linear behaviour, associated models and their parameters, and methods how to constrain these using 3. Initial stress: Relation with structural setting and methods to quantify the in-situ stress condition 4. Loading conditions: Changes in pore pressure and temperature on wellbore and field scale This 5 full-day course starts with the determination of the stresses in the earth, the impact of different structural styles, salt bodies, faulting and folding on the orientation of the three main principal stress components. Different (field) data sources will be discussed to constrain their magnitude, while exercises will be made to gain hands-on experience. Subsequently, the concepts of stress and strain will be discussed, linear elasticity, total and effective stress and poro-elasticity in 1D, 2D and 3D, as well as thermal expansion. Participants will be able to construct and interpret a Mohr-circles. Also, different failure mechanisms and associated models (plastic, viscous) will be discussed. All these concepts apply on a material point level. Next, geomechanics on the wellbore scale is addressed, starting with the stress distribution around the wellbore (Kirsch equations). The impact of mudweight on shear and tensile failure (fracturing) will be calculated, and participants will be able to determine the mudweight window stable drilling operations, while considering well deviation and the use of oil-based and water-based muds (pore pressure penetration). Fracturing conditions and fracture propagation will be addressed. Field-scale geomechanics is addressed on the fourth day, focussing on building a 3D geomechanical model that is fit-for-purpose (focussing on the risks that need evaluation). Here, geological interpretation (layering), initial stress and formation property estimation (from petrophysical logs and lab experiments) as well as determining the loading conditions come together. The course is concluded with interpretation of the field-wide geomechanical response to reservoir depletion with special attention to reservoir compaction & subsidence, well failure and fault reactivation & induced seismicity. Special attention is paid to uncertainties and formulating advice that impacts decision-making during development and production stages of a project. This course can also be offered through Virtual Instructor Led Training (VILT) format. Training Objectives Upon completing of this course, the participants will be able to: Identify potential project risks that may need a geomechanical evaluation Construct a pressure-depth plot based on available field data (density logs, (X)LOT, FIT, RFT) Employ log-based correlation function to estimate mechanical properties Produce a simplified, but appropriate geometrical (layered, upscaled) model that honours contrasts in initial stress, formation properties and loading conditions, including Construct and interpret a Mohr-circle for shear and tensile failure Calculate the mud weight that leads to shear and tensile failure (fracturing conditions) Identify potential lab experiments to measure required formation properties Describe the workflow and data to develop a field-wide fit-for-purpose geomechanical model Discuss the qualitative impact of pressure and temperature change on the risk related to compaction, well failure, top-seal integrity and fault reactivation Target Audience This course is intended for Drilling Engineers, Well Engineers, Production Technologists, Completion Engineers, Well Superintendents, Directional Drillers, Wellsite Supervisors and others, who wish to further their understanding of rock mechanics and its application to drilling and completion. There is no specific formal pre-requisite for this course. However, the participants are requested to have been exposed to drilling, completions and production operations in their positions and to have a recommended minimum of 3 years of field experience. Course Level Intermediate Trainer Your expert course leader has over 30 years of experience in the Oil & Gas industry, covering all geomechanical issues in the petroleum industry for Shell. Some of his projects included doing research and providing operational advice in wellbore stability, sand failure prediction, and oil-shale retortion among others. He guided multi-disciplinary teams in compaction & subsidence, top-seal integrity, fault reactivation, induced-seismicity and containment. He was also involved in projects related to Carbon Capture Storage (CCS). He is the founding father of various innovations and assessment tools, and developed new insights into the root causes seismicity induced by Oil & Gas production. Furthermore, he was the regional coordinator for technology deployment in Africa, and Smart Fields (DOFF, iField) design advisor for Shell globally. He was responsible for the Geomechanical competence framework, and associated virtual and classroom training programme in Shell for the last 10 years. He served as one of the Subject Matter Expert (SME) on geomechanics, provided Technical Assurance to many risk assessments, and is a co-author of Shell's global minimun standard on top-seal integry and containment. He has a MSc and PhD in Civil Engineering and computational mechanics from Delft University of Technology, The Netherlands. Training experience: Developed and delivered the following (between 2010 and 2020): The competence framework for the global geomechanical discipline in Shell Online Geomechanical training programs for petroleum engineers (post-doc level) The global minimum standard for top-seal integrity assessment in Shell Over 50 learning nuggets with Subject Matter Experts Various Shell virtual Geomechanical training courses covering all subjects Developed Advanced Geomechanical training program for experienced staff in Shell Coaching of KPC staff on Geomechanics and containment issues on an internship at Shell in The Netherlands, Q4 2014 Lectured at the Utrecht University summer school (The Netherlands, 2020) on induced seismicity among renowned earthquake experts (Prof. Mark Zoback, Prof. Jean-Philippe Avouac, Prof. Jean-Pierre Ampuero and Prof. Torsten Dahm) (https://www.nwo.nl/onderzoeksprogrammas/deepnl/bijeenkomsten/6-10-juli-2020-deepnl-webinar-series-induced-seismicity) Lectured at the Danish Technical University summer school (Copenhagen, 2021) summer school on Carbon Capture and Storage (https://www.oilgas.dtu.dk/english/Events/DHRTC-Summer-School) Virtual Carbon Capture and Storage (CCS): Project Risks & How to Manage Them training course (October and November 2021) POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information post training support and fees applicable Accreditions And Affliations
Enhance your knowledge of natural gas and LNG sales agreements with EnergyEdge course. Enroll now to gain valuable industry knowledge and skills.