• Professional Development
  • Medicine & Nursing
  • Arts & Crafts
  • Health & Wellbeing
  • Personal Development

435 Home Improvement courses delivered Online

Electrical Power System and High Voltage Engineering

4.5(3)

By Studyhub UK

Dive deep into the electrifying realm of electrical power systems and high-voltage engineering. 'Electrical Power System and High Voltage Engineering' paves the way for enthusiasts to harness the power of cutting-edge electrical innovations. Through eight meticulously structured modules, learners get an intricate glimpse into the diverse types of high voltage, their generation, and the nuances of AC and DC voltages. As you delve deeper, you're not just gaining insights; you're powering your potential in a high-voltage sector. Learning Outcomes Grasp foundational concepts of the electrical power system and high voltage. Differentiate among the various types of high voltage. Understand the processes involved in generating high-voltage AC at different frequencies. Acquire knowledge on impulse high voltage generation. Gain proficiency in the techniques of high-voltage DC generation. Why choose this Electrical Power System and High Voltage Engineering course? Unlimited access to the course for a lifetime. Opportunity to earn a certificate accredited by the CPD Quality Standards after completing this course. Structured lesson planning in line with industry standards. Immerse yourself in innovative and captivating course materials and activities. Assessments are designed to evaluate advanced cognitive abilities and skill proficiency. Flexibility to complete the Electrical Power System and High Voltage Engineering Course at your own pace, on your own schedule. Receive full tutor support throughout the week, from Monday to Friday, to enhance your learning experience. Who is this Electrical Power System and High Voltage Engineering course for? Engineering students keen on specialising in power systems. Electrical engineers looking to upgrade their knowledge. Professionals in the power sector aiming for deeper insights. Technical consultants in the energy domain. Innovators eager to understand the intricacies of high voltage engineering. Career path Power System Engineer: £35,000 - £60,000 High Voltage Engineer: £40,000 - £65,000 Electrical Design Engineer: £30,000 - £55,000 Technical Project Manager in Power Systems: £45,000 - £70,000 Transmission Line Engineer: £38,000 - £63,000 Power System Analyst: £37,000 - £61,000 Prerequisites This Electrical Power System and High Voltage Engineering does not require you to have any prior qualifications or experience. You can just enrol and start learning.This Electrical Power System and High Voltage Engineering was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Certification After studying the course materials, there will be a written assignment test which you can take at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £4.99 Original Hard Copy certificates need to be ordered at an additional cost of £8. Course Curriculum Electrical Power System and High Voltage Engineering Module 1- Introduction to Electrical Power System and High Voltage 00:25:00 Module 2- Types of High Voltage 00:17:00 Module 3- Generation of High Voltage AC at Power Frequency 00:30:00 Module 4- Generation of High Voltage High Frequency AC 00:14:00 Module 5- Generation of High Voltage Impulse Part 1 00:37:00 Module 6- Generation of High Voltage Impulse Part 2 00:14:00 Module 7- Generation of High Voltage DC Part 1 00:43:00 Module 8- Generation of High Voltage DC Part 2 00:45:00

Electrical Power System and High Voltage Engineering
Delivered Online On Demand3 hours 45 minutes
£10.99

Electrical Engineering for Electrical Substations

4.5(3)

By Studyhub UK

Embarking on a journey through the realm of electrical substations, the 'Electrical Engineering for Electrical Substations' course illuminates the path for aspiring electrical engineers. Imagine plunging into the intricacies of electrical substations, a pivotal component in our electrified world. This course offers a unique blend of theoretical knowledge and practical insights, vital for anyone keen on mastering the core elements of electrics and electronics. From the fundamentals in Unit 1, diving into the design of earthing systems in Unit 2, to the nuanced introduction to substation design in Unit 3, students are equipped with a comprehensive understanding of this specialised field. Moreover, the course is an opportunity to enhance one's prospects in various electrical engineering jobs, paving the way for a lucrative career. The course builds a strong foundation in electrical engineering principles and opens doors to diverse opportunities such as electrical engineering apprenticeships. It serves as a stepping stone for those seeking to delve deeper into the field, potentially leading to roles in designing and managing the heart of electrical systems - the substations. This is more than just an educational journey; it's a route to a rewarding career marked by competitive electrical engineering salaries and fulfilling job roles. For those fascinated by the latest technological advancements, the course touches upon the electrifying world of electric car engines, integrating modern innovation with traditional electrical engineering concepts. This unique blend of old and new prepares learners for a future where electrical engineering expertise is valued and essential. Imagine being at the forefront of this exciting field, where every day brings new challenges and opportunities. Learning Outcomes Gain a comprehensive understanding of the basics of electrical substations. Acquire knowledge in designing effective earthing systems. Learn the principles of substation design and management. Develop an appreciation of the integration between traditional electrical engineering and modern innovations like electric car engines. Prepare for a diverse range of electrical engineering roles in various sectors. Why buy this Electrical Engineering for Electrical Substations? Unlimited access to the course for a lifetime. Opportunity to earn a certificate accredited by the CPD Quality Standards and CIQ after completing this course. Structured lesson planning in line with industry standards. Immerse yourself in innovative and captivating course materials and activities. Assessments designed to evaluate advanced cognitive abilities and skill proficiency. Flexibility to complete the Course at your own pace, on your own schedule. Receive full tutor support throughout the week, from Monday to Friday, to enhance your learning experience. Unlock career resources for CV improvement, interview readiness, and job success. Certification After studying the course materials of the Electrical Engineering for Electrical Substations there will be a written assignment test which you can take either during or at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £5.99. Original Hard Copy certificates need to be ordered at an additional cost of £9.60. Who is this Electrical Engineering for Electrical Substations course for? Individuals aspiring to become electrical engineers. Professionals seeking to expand their knowledge in substation design and management. Students interested in pursuing a career in electrical engineering. Technicians aiming for an electrical engineering apprenticeship. Anyone interested in the technological aspects of electric car engines. Prerequisites This Electrical Engineering for Electrical Substations does not require you to have any prior qualifications or experience. You can just enrol and start learning.This Electrical Engineering for Electrical Substations was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Career path Electrical Engineer: Average Salary £28,000 - £40,000 annually Substation Design Engineer: Average Salary £32,000 - £48,000 annually Electrical Project Manager: Average Salary £35,000 - £55,000 annually Senior Electrical Engineer: Average Salary £40,000 - £60,000 annually Electrical Engineering Technician: Average Salary £25,000 - £35,000 annually Renewable Energy Engineer: Average Salary £30,000 - £45,000 annually Course Curriculum Electrical Engineering for Electrical Substations Unit 1: Basics of Electrical Substations Module 1: Introduction To Electrical Substation 00:06:00 Module 2: Construction of Electrical Substation and Transformers 00:09:00 Module 3: Instrument Transformers and Principle of Operation of Trip Circuit 00:13:00 Module 4: Types Of Circuit Breakers And Fuses 00:23:00 Module 5: Types of Relays According to Function, Construction and Time Characteristics 00:06:00 Module 6: Definition of Busbar and Its Schemes 00:17:00 Module 7: Construction of Underground Cables 00:10:00 Module 8: Construction of Overhead Transmission Lines 00:15:00 Module 9: Comparison between Underground Cables and Overhead Transmission Lines@ 00:05:00 Module 10: Types of Switches In Power System and Substations 00:08:00 Module 11: Importance of Capacitor Banks in Power System 00:08:00 Module 12: Other Important Components in Electrical Substation 00:07:00 Module 13: Classification of Substations 00:05:00 Module 14: Relation between Voltage and Substations 00:02:00 Module 15: Air Insulated Substation and Gas Insulated Substation 00:09:00 Module 16: Importance of Ring Main Unit in Power System 00:07:00 Module 17:Extra Images 00:01:00 Unit 2: Design of Earthing System Module 1: Effect of Current on Human Body 00:09:00 Module 2: Types of Electric Hazards 00:08:00 Module 3: Classification of Earthing Systems 00:24:00 Module 4: Components of Earthing System 00:09:00 Module 5: Design and Resistance of Earthing Electrode 00:12:00 Module 6: Design and Resistance of Earthing Conductor 00:13:00 Module 7: Earth Resistance by Megger and Three Point Method 00:03:00 Module 8: Design Earthing or Ground Grid Using ETAP 00:21:00 Unit 3: Introduction to Design of Substation Module 1: What Ip or Ingress Protection 00:05:00 Module 2: Selection of Busbars in Electrical Substation 00:11:00 Module 3: Design of Substations 00:19:00 Module 4: Single Line Diagram of 66 to 11kv Substation 00:20:00 Assignment Assignment -Electrical Engineering for Electrical Substations 00:00:00

Electrical Engineering for Electrical Substations
Delivered Online On Demand5 hours 5 minutes
£10.99

Power Electronics for Electrical Engineering

4.5(3)

By Studyhub UK

Overview Uplift Your Career & Skill Up to Your Dream Job - Learning Simplified From Home! Kickstart your career & boost your employability by helping you discover your skills, talents and interests with our special Power Electronics for Electrical Engineering Course. You'll create a pathway to your ideal job as this course is designed to uplift your career in the relevant industry. It provides professional training that employers are looking for in today's workplaces. The Power Electronics for Electrical Engineering Course is one of the most prestigious training offered at StudyHub and is highly valued by employers for good reason. This Power Electronics for Electrical Engineering Course has been designed by industry experts to provide our learners with the best learning experience possible to increase their understanding of their chosen field. This Power Electronics for Electrical Engineering Course, like every one of Study Hub's courses, is meticulously developed and well researched. Every one of the topics is divided into elementary modules, allowing our students to grasp each lesson quickly. At StudyHub, we don't just offer courses; we also provide a valuable teaching process. When you buy a course from StudyHub, you get unlimited Lifetime access with 24/7 dedicated tutor support. Why buy this Power Electronics for Electrical Engineering? Unlimited access to the course for forever Digital Certificate, Transcript, student ID all included in the price Absolutely no hidden fees Directly receive CPD accredited qualifications after course completion Receive one to one assistance on every weekday from professionals Immediately receive the PDF certificate after passing Receive the original copies of your certificate and transcript on the next working day Easily learn the skills and knowledge from the comfort of your home Certification After studying the course materials of the Power Electronics for Electrical Engineering there will be a written assignment test which you can take either during or at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £5.99. Original Hard Copy certificates need to be ordered at an additional cost of £9.60. Who is this course for? This Power Electronics for Electrical Engineering course is ideal for Students Recent graduates Job Seekers Anyone interested in this topic People already working in the relevant fields and want to polish their knowledge and skill. Prerequisites This Power Electronics for Electrical Engineering does not require you to have any prior qualifications or experience. You can just enrol and start learning.This Power Electronics for Electrical Engineering was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Career path As this course comes with multiple courses included as bonus, you will be able to pursue multiple occupations. This Power Electronics for Electrical Engineering is a great way for you to gain multiple skills from the comfort of your home. Course Curriculum Unit 1- Introduction to Power Electronics Components Module 1- Introduction to Power Electronics 00:13:00 Module 2- Uncontrolled Switches 00:17:00 Module 3- What is the Benefit of Diode 00:06:00 Module 4- Semi-Controlled Switches Part 1 00:09:00 Module 5- Semi-Controlled Switches Part 2 00:14:00 Module 6- Semi-Controlled Switches Part 3 00:05:00 Module 7- What is the Benefit of Thyristor 00:05:00 Module 8- Fully Controlled Switches Part 1 00:17:00 Module 9- Fully Controlled Switches Part 2 00:10:00 Module 10- Fully Controlled Switches Part 3 00:12:00 Unit 2- Fundamentals of Rectifier Circuits Module 1- Overview on Rectifiers 00:02:00 Module 2- Rectifier Definition 00:01:00 Module 3- Half Wave Uncontrolled Rectifier with R Load 00:21:00 Module 4- Example on Half Wave Uncontrolled Rectifier with R Load Part 1 00:06:00 Module 5- Example on Half Wave Uncontrolled Rectifier with R Load Part 2 00:07:00 Module 6- Half Wave Uncontrolled Rectifier with RL Load 00:10:00 Module 7- Derivation of the Discontinuous Current in R-L Load 00:08:00 Module 8- Freewheeling Diode (Commutation Diode) 00:03:00 Module 9- Half Wave R-L Load with FWD 00:09:00 Module 10- Difference Between Continuous and Discontinuous Mode in RL Load 00:07:00 Module 11- Half Wave RL Load with FWD Continuous Mode 00:06:00 Module 12- Example on Half Wave Rectifier with FWD 00:07:00 Module 13- Bridge Full Wave Uncontrolled Rectifier Part 1 00:07:00 Module 14- Bridge Full Wave Uncontrolled Rectifier Part 2 00:05:00 Module 15- Quick Revision on Bridge Full Wave Uncontrolled Rectifier 00:06:00 Module 16- Firing Angle 00:02:00 Module 17- Half Wave Controlled Rectifier R Load 00:05:00 Module 18- Half Wave Controlled Rectifier R-L Load 00:04:00 Module 19- Half Controlled R-L Load with FWD 00:06:00 Module 20- Example 1 00:07:00 Module 21- Example 2 00:08:00 Module 22- Example 3 00:13:00 Module 23- Example 4 00:09:00 Module 24- Example 5 00:05:00 Module 25- Fully Controlled Bridge Rectifier Part 1 00:06:00 Module 26- Fully Controlled Bridge Rectifier Part 2 00:06:00 Module 27- Quick Revision on Bridge Full Wave Controlled Rectifier 00:02:00 Module 28- Example 6 00:08:00 Module 29- Half Controlled Bridge Rectifier 00:08:00 Module 30- Half Controlled Bridge Rectifier with FWD 00:05:00 Module 31- Example 7 00:06:00 Module 32- Example 8 00:07:00 Module 33- Performance Parameters 00:04:00 Module 34- Power Factor 00:04:00 Unit 3- Fundamentals of AC Choppers Module 1- Introduction to AC Choppers 00:02:00 Module 2- Definition of AC Choppers 00:05:00 Module 3- Switching Techniques in AC Choppers 00:06:00 Module 4- Applications on AC Choppers 00:03:00 Module 5- Types of AC Choppers 00:02:00 Module 6- AC Chopper with R Load 00:14:00 Module 7- Example 1 on AC Chopper with R Load 00:06:00 Module 8- Example 2 on AC Chopper with R Load 00:04:00 Module 9- AC Chopper with L Load Part 1 00:13:00 Module 10- AC Chopper with L Load Part 2 00:06:00 Module 11- Example on AC Chopper with L Load 00:08:00 Module 12- AC Chopper with RL Series Load 00:20:00 Module 13- Example on AC Chopper with RL Series Load 00:07:00 Module 14- AC Chopper with RL Parallel Load 00:25:00 Module 15- Example on AC Chopper with RL Parallel Load 00:06:00 Module 16- AC Chopper with Pure Capacitive Load 00:14:00 Module 17- Example on AC Chopper with Pure Capacitive Load 00:04:00 Module 18- AC Chopper Loaded by Heavy Rectifier 00:06:00 Module 19- AC Chopper Loaded by an AC Motor with Sinusoidal Back Emf 00:12:00 Module 20- Example on AC Chopper Loaded by an AC Motor with Sinusoidal Back Emf 00:08:00 Module 21- Integral Cycle Control 00:11:00 Module 22- Example on Integral Cycle Control 00:04:00 Unit 4- Fundamentals of DC Choppers Module 1- Introduction to DC Choppers 00:02:00 Module 2- Definition and Application of DC Choppers 00:05:00 Module 3- Step down DC Chopper with R Load 00:12:00 Module 4- Example on Step Dwon DC Chopper with R Load 00:08:00 Module 5- Generation of Duty Cycle 00:09:00 Module 6- Switching Techniques 00:03:00 Module 7- Step Down DC Chopper with RLE Load Part 1 00:19:00 Module 8- Step Down DC Chopper with RLE Load Part 2 00:15:00 Module 9- Example 1 on Step Down DC Chopper with RLE Load 00:13:00 Module 10- Example 2 on Step Down DC Chopper with RLE Load 00:02:00 Module 11- Step Up DC Chopper with R or RL Load 00:09:00 Module 12- Step Up DC Chopper with RE Load 00:15:00 Module 13- Example on Step Up DC Chopper with RE Load 00:20:00 Module 14- Buck Regulator Part 1 00:16:00 Module 15- Buck Regulator Part 2 00:17:00 Module 16- Example on Buck Regulator 00:03:00 Module 17- Boost Regulator 00:23:00 Module 18- Example on Boost Regulator 00:06:00 Module 19- Buck Boost Converter 00:17:00 Module 20- Example on Buck-Boost Converter 00:05:00 Unit 5- Fundamentals of Inverters Module 1- Introduction to Inverters 00:02:00 Module 2- Definition of Inverters 00:04:00 Module 3- Importance and Applications of Inverters 00:08:00 Module 4- Single Phase Half Bridge R-Load 00:15:00 Module 5- Single Phase Half Bridge RL- Load 00:08:00 Module 6- Performance Parameters of an Inverter 00:05:00 Module 7- Example on Single Phase Half Bridge 00:10:00 Module 8- Single Phase Bridge Inverter R- Load 00:06:00 Module 9- Single Phase Bridge Inverter RL- Load 00:07:00 Module 10- Example on Single Phase Bridge Inverter 00:06:00 Module 11- Three Phase Inverters and Obtaining the Line Voltages 00:15:00 Module 12- Threee Phase Inverters and Obtaining The Phase Voltages 00:17:00 Module 13- Example on Three Phase Inverters 00:16:00 Module 14- Single Pulse Width Modulation 00:13:00 Module 15- Multiple Pulse Width Modulation 00:13:00 Module 16- Example on Multiple Pulse Width Modulation 00:04:00 Module 17- Sinusoidal Pulse Width Modulation 00:16:00 Module 18- Industrial Inverter 00:03:00 Assignment Assignment - Power Electronics for Electrical Engineering 00:00:00

Power Electronics for Electrical Engineering
Delivered Online On Demand15 hours 1 minutes
£10.99

Electrical Circuits Laws and Methods

4.5(3)

By Studyhub UK

The 'Electrical Circuits Laws and Methods' course is designed to provide a comprehensive understanding of electric circuits, laws, and analytical methods. It covers fundamental concepts, basic laws, methods of analysis, circuit theorems, operational amplifiers, and capacitors and inductors. Students will learn essential principles to analyze and design electrical circuits effectively. Learning Outcomes: Understand the basic concepts of electric circuits, including electric charge, current, voltage, power, and energy. Apply Ohm's Law and other basic laws to analyze resistive circuits and determine currents and voltages. Use nodal and mesh analysis methods to analyze and solve complex electrical circuits with various sources. Apply circuit theorems such as the Superposition Theorem, Thevenin's Theorem, and Norton's Theorem to simplify circuit analysis. Comprehend the properties and applications of operational amplifiers in various amplifier configurations. Analyze capacitors and inductors in DC circuits, calculate their stored energy, and understand their equivalent capacitance and inductance in series and parallel configurations. Why buy this Electrical Circuits Laws and Methods? Unlimited access to the course for a lifetime. Opportunity to earn a certificate accredited by the CPD Quality Standards and CIQ after completing this course. Structured lesson planning in line with industry standards. Immerse yourself in innovative and captivating course materials and activities. Assessments designed to evaluate advanced cognitive abilities and skill proficiency. Flexibility to complete the Course at your own pace, on your own schedule. Receive full tutor support throughout the week, from Monday to Friday, to enhance your learning experience. Unlock career resources for CV improvement, interview readiness, and job success. Certification After studying the course materials of the Electrical Circuits Laws and Methods there will be a written assignment test which you can take either during or at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £5.99. Original Hard Copy certificates need to be ordered at an additional cost of £9.60. Who is this course for? The Electrical Circuits Laws and Methods course is designed for undergraduate and graduate electrical engineering students as a foundational study of circuit theory. It is suitable for electronics enthusiasts eager to grasp the functioning and design of electrical circuits for various applications. Engineering technicians and technologists working in fields like telecommunications and manufacturing can benefit from this course to better understand and troubleshoot electrical circuits in practical settings. Electrical technicians and electricians can enhance their problem-solving abilities and theoretical knowledge of electrical circuits by taking this course. Hobbyists and DIY enthusiasts interested in electronics projects will find value in learning circuit design and troubleshooting through this course. Professionals in engineering and related fields can use this course for continuing education to refresh their knowledge and stay up-to-date with advancements in electrical circuit theory and methods. Prerequisites This Electrical Circuits Laws and Methods does not require you to have any prior qualifications or experience. You can just enrol and start learning.This Electrical Circuits Laws and Methods was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Career path Electrical Engineer: £28,000 - £70,000 per year Electronics Engineer: £30,000 - £75,000 per year Electrician: £24,000 - £45,000 per year Power Systems Engineer: £32,000 - £80,000 per year Telecommunications Engineer: £28,000 - £70,000 per year Automation and Control Systems Engineer: £35,000 - £80,000 per year Course Curriculum Unit 1- Basic Concepts Module 1- What Is an Electric Circuit 00:02:00 Module 2-System of Units 00:07:00 Module 3- What Is an Electric Charge 00:05:00 Module 4- What Is an Electric Current 00:08:00 Module 5-Example 1 00:01:00 Module 6- Example 2 00:02:00 Module 7- Example 3 00:02:00 Module 8- What Is Voltage 00:07:00 Module 9- What Is Power 00:06:00 Module 10- What Is Energy 00:04:00 Module 11- Example 4 00:03:00 Module 12-Example 5 00:03:00 Module 13- Dependent and Independent Sources 00:05:00 Module 14- Example 6 Part 1 00:04:00 Module 15- Example 6 Part 2 00:01:00 Module 16- Application 1 Cathode Ray Tube 00:04:00 Module 17-Example 10 00:03:00 Module 18- Application 2 Electricity Bills 00:02:00 Module 19- Example 8 00:03:00 Unit 2- Basic Laws Module 1- Introduction to Basic Laws 00:01:00 Module 2- Definition of Resistance 00:06:00 Module 3- Ohm's Law 00:02:00 Module 4- Types of Resistances 00:06:00 Module 5- Open and Short Circuit 00:05:00 Module 6- Definition of Conductance 00:04:00 Module 7-Example 1 00:01:00 Module 8- Example 2 00:03:00 Module 9- Example 3 00:03:00 Module 10- Branch, Node and Loops 00:07:00 Module 11- Series and Parallel Connection 00:04:00 Module 12- KCL 00:04:00 Module 13- KVL 00:03:00 Module 14- Example 4 00:05:00 Module 15- Example 5 00:02:00 Module 16- Example 6 00:06:00 Module 17- Series Resistors and Voltage Division 00:07:00 Module 18-Parallel Resistors and Current Division 00:12:00 Module 19- Analogy between Resistance and Conductance 00:07:00 Module 20-Example 7 00:03:00 Module 21-Example 8 00:04:00 Module 22- Introduction to Delta-Wye Connection 00:06:00 Module 23-Delta to Wye Transformation 00:05:00 Module 24- Wye to Delta Transformation 00:07:00 Module 25-Example 9 00:03:00 Module 26- Example 10 00:15:00 Module 27- Application Lighting Bulbs 00:03:00 Module 28-Example 11 00:05:00 Unit 3- Methods of Analysis Module 1- Introduction to Methods of Analysis 00:02:00 Module 2- Nodal Analysis with No Voltage Source 00:15:00 Module 3-Example 1 00:04:00 Module 4-Cramer's Method 00:04:00 Module 5-Nodal Analysis with Voltage Source 00:07:00 Module 6- Example 2 00:05:00 Module 7- Example 3 00:13:00 Module 8-Mesh Analysis with No Current Source 00:10:00 Module 9-Example 4 00:04:00 Module 10- Example 5 00:06:00 Module 11-Mesh Analysis with Current Source 00:07:00 Module 12-Example 6 00:08:00 Module 13-Nodal Vs Mesh Analysis 00:04:00 Module 14-Application DC Transistor 00:04:00 Module 15-Example 7 00:04:00 Unit 4- Circuit Theorems Module 1-Introduction to Circuit theorems 00:02:00 Module 2-Linearity of Circuit 00:07:00 Module 3-Example 1 00:04:00 Module 4-Superposition Theorem 00:07:00 Module 5- Example 2 00:04:00 Module 6-Example 3 00:06:00 Module 7-Source Transformation 00:08:00 Module 8-Example 4 00:05:00 Module 9-Example 5 00:03:00 Module 10-Thevenin Theorem 00:10:00 Module 11-Example 6 00:06:00 Module 12-Example 7 00:05:00 Module 13- Norton's Theorem 00:05:00 Module 14-Example 8 00:03:00 Module 15-Example 9 00:05:00 Module 16-Maximum Power Transfer 00:05:00 Module 17-Example 10 00:03:00 Module 18-Resistance Measurement 00:05:00 Module 19-Example 11 00:01:00 Module 20-Example 12 00:04:00 Module 21-Summary 00:05:00 Unit 5- Operational Amplifiers Module 1-Introduction to Operational Amplifiers 00:03:00 Module 2-Construction of Operational Amplifiers 00:07:00 Module 3-Equivalent Circuit of non Ideal Op Amp 00:10:00 Module 4-Vo Vs Vd Relation Curve 00:03:00 Module 5-Example 1 00:09:00 Module 6-Ideal Op Amp 00:07:00 Module 7- Example 2 00:04:00 Module 8-Inverting Amplifier 00:05:00 Module 9-Example 3 00:05:00 Module 10-Example 4 00:02:00 Module 11-Non Inverting Amplifier 00:08:00 Module 12-Example 5 00:03:00 Module 13-Summing Amplifier 00:05:00 Module 14-Example 6 00:02:00 Module 15-Difference amplifier 00:06:00 Module 16-Example 7 00:08:00 Module 17-Cascaded Op Amp Circuits 00:06:00 Module 18-Example 8 00:04:00 Module 19-Application Digital to Analog Converter 00:06:00 Module 20-Example 9 00:04:00 Module 21-Instrumentation Amplifiers 00:05:00 Module 22-Example 10 00:01:00 Module 23-Summary 00:04:00 Unit 6- Capacitors and Inductors Module 1-Introduction to Capacitors and Inductors 00:02:00 Module 2-Capacitor 00:06:00 Module 3-Capacitance 00:02:00 Module 4-Voltage-Current Relation in Capacitor 00:03:00 Module 5-Energy Stored in Capacitor 00:06:00 Module 6-DC Voltage and Practical Capacitor 00:02:00 Module 7-Example 1 00:01:00 Module 8-Example 2 00:01:00 Module 9-Example 3 00:05:00 Module 10-Equivalent Capacitance of Parallel Capacitors 00:02:00 Module 11-Equivalent Capacitance of Series Capacitors 00:03:00 Module 12-Example 4 00:02:00 Module 13-Definition of Inductors 00:06:00 Module 14-Definition of Inductance 00:03:00 Module 15-Voltage-Current Relation in Inductor 00:03:00 Module 16-Power and Energy Stored in Inductor 00:02:00 Module 17-DC Source and Inductor 00:04:00 Module 18-Example 5 00:02:00 Module 19-Series Inductors 00:03:00 Module 20-Parallel Inductors 00:04:00 Module 21-Example 6 00:01:00 Module 22-Small Summary to 3 Basic Elements 00:02:00 Module 23-Example 7 00:05:00 Module 24-Application Integrator 00:05:00 Module 25-Example 8 00:03:00 Module 26-Application Differentiator 00:02:00 Module 27-Example 9 00:06:00 Module 28-Summary 00:05:00 Assignment Assignment - Electrical Circuits Laws and Methods 00:00:00

Electrical Circuits Laws and Methods
Delivered Online On Demand10 hours 19 minutes
£10.99

Electrical Technologist: Diploma in Electrical Technology

4.5(3)

By Studyhub UK

Ignite your future in the world of electrical technology with our Diploma in Electrical Technology course. Delve into a captivating journey through 8 modules, each designed to empower you with the fundamental knowledge and skills needed to excel in this dynamic field. From mastering electrical units and Ohm's Laws to ensuring safety precautions are met, this course covers it all. By the end of this program, you will be well-equipped to embark on a rewarding career in electrical technology, where opportunities abound. Learning Outcomes: Gain a solid understanding of electrical units and Ohm's laws to calculate and analyze electrical circuits. Develop knowledge and skills in working with direct current (DC) and alternating current (AC) circuits. Learn about voltage and resistance, including their role in electrical systems and circuit analysis. Understand capacitance and capacitors, their applications, and their role in energy storage. Explore the principles of magnetism and its relevance in electrical technology. Comprehend essential safety precautions and practices to ensure electrical work is performed safely and effectively. Acquire hands-on knowledge in electrical technology through practical exercises and simulations. Be well-prepared to work as an electrical technologist and apply your expertise in various electrical projects and systems. Why buy this Electrical Technologist: Diploma in Electrical Technology? Unlimited access to the course for a lifetime. Opportunity to earn a certificate accredited by the CPD Quality Standards and CIQ after completing this course. Structured lesson planning in line with industry standards. Immerse yourself in innovative and captivating course materials and activities. Assessments designed to evaluate advanced cognitive abilities and skill proficiency. Flexibility to complete the Course at your own pace, on your own schedule. Receive full tutor support throughout the week, from Monday to Friday, to enhance your learning experience. Unlock career resources for CV improvement, interview readiness, and job success. Certification After studying the course materials of the Electrical Technologist: Diploma in Electrical Technology you will be able to take the MCQ test that will assess your knowledge. After successfully passing the test you will be able to claim the pdf certificate for £5.99. Original Hard Copy certificates need to be ordered at an additional cost of £9.60. Who is this course for? Aspiring electrical technicians and technologists. Students and graduates interested in pursuing a career in electrical technology. Electricians looking to enhance their knowledge and skills. Individuals seeking to transition into the electrical technology field. Anyone passionate about understanding the core principles of electrical systems. Prerequisites This Electrical Technologist: Diploma in Electrical Technology was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Career path Electrical Technician: £20,000 - £35,000 per year Electrical Technologist: £25,000 - £45,000 per year Electrician: £20,000 - £40,000 per year Electrical Engineer: £30,000 - £60,000 per year Maintenance Technician: £25,000 - £40,000 per year Automation Engineer: £35,000 - £60,000 per year Course Curriculum Module 01: Introduction and Basics Module 01: Introduction and Basics 00:18:00 Module 02: Electrical Units and Ohm's Laws Module 02: Electrical Units and Ohm's Laws 00:20:00 Module 03: Direct Current Module 03: Direct Current 00:23:00 Module 04: Alternating Current Basics Module 04: Alternating Current Basics 00:22:00 Module 05: Voltage and Resistance Module 05: Voltage and Resistance 00:26:00 Module 06: Capacitance and Capacitors Module 06: Capacitance and Capacitors 00:22:00 Module 07: Magnetism Module 07: Magnetism 00:27:00 Module 08: Safety Precautions Module 08: Safety Precautions 00:31:00 Mock Exam Mock Exam - Electrical Technologist: Diploma in Electrical Technology 00:20:00 Final Exam Final Exam - Electrical Technologist: Diploma in Electrical Technology 00:20:00

Electrical Technologist: Diploma in Electrical Technology
Delivered Online On Demand3 hours 49 minutes
£10.99

Electrical Machines for Electrical Engineering

4.5(3)

By Studyhub UK

Overview Uplift Your Career & Skill Up to Your Dream Job - Learning Simplified From Home! Kickstart your career & boost your employability by helping you discover your skills, talents and interests with our special Electrical Machines for Electrical Engineering Course. You'll create a pathway to your ideal job as this course is designed to uplift your career in the relevant industry. It provides professional training that employers are looking for in today's workplaces. The Electrical Machines for Electrical Engineering Course is one of the most prestigious training offered at StudyHub and is highly valued by employers for good reason. This Electrical Machines for Electrical Engineering Course has been designed by industry experts to provide our learners with the best learning experience possible to increase their understanding of their chosen field. This Electrical Machines for Electrical Engineering Course, like every one of Study Hub's courses, is meticulously developed and well researched. Every one of the topics is divided into elementary modules, allowing our students to grasp each lesson quickly. At StudyHub, we don't just offer courses; we also provide a valuable teaching process. When you buy a course from StudyHub, you get unlimited Lifetime access with 24/7 dedicated tutor support. Why buy this Electrical Machines for Electrical Engineering? Unlimited access to the course for forever Digital Certificate, Transcript, student ID all included in the price Absolutely no hidden fees Directly receive CPD accredited qualifications after course completion Receive one to one assistance on every weekday from professionals Immediately receive the PDF certificate after passing Receive the original copies of your certificate and transcript on the next working day Easily learn the skills and knowledge from the comfort of your home Certification After studying the course materials of the Electrical Machines for Electrical Engineering there will be a written assignment test which you can take either during or at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £5.99. Original Hard Copy certificates need to be ordered at an additional cost of £9.60. Who is this course for? This Electrical Machines for Electrical Engineering course is ideal for Students Recent graduates Job Seekers Anyone interested in this topic People already working in the relevant fields and want to polish their knowledge and skill. Prerequisites This Electrical Machines for Electrical Engineering does not require you to have any prior qualifications or experience. You can just enrol and start learning.This Electrical Machines for Electrical Engineering was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Career path As this course comes with multiple courses included as bonus, you will be able to pursue multiple occupations. This Electrical Machines for Electrical Engineering is a great way for you to gain multiple skills from the comfort of your home. Course Curriculum Unit 1: Introduction to Electric Machines Module 1- Introduction to Electric Machines 00:03:00 Module 2- Types of Electric Machines and Principle of Electrical Generation 00:09:00 Unit 2: DC Machines Module 1- Importance and Construction of DC Machines 00:26:00 Module 2- Armature Winding and EMF Equation 00:40:00 Module 3-Solved Example 1 00:05:00 Module 4-Solved Example 2 00:04:00 Module 5-Solved Example 3 00:07:00 Module 6-Solved Example 4 00:06:00 Module 7-Separately Excited DC Machine 00:21:00 Module 8-Shunt and Series DC Machines 00:25:00 Module 9-Solved Example 1 on Separately Excited DC Machine 00:07:00 Module 10-Solved Example 2 on Separately Excited DC Machine 00:07:00 Module 11-Solved Example 3 on Shunt Generator 00:04:00 Module 12-Solved Example 4 on Shunt Generator 00:07:00 Module 13-Solved Example 5 on Series DC Generator 00:06:00 Module 14-Types and Applications of Compound DC Motors 00:07:00 Module 15- Torque-Speed Characteristics and Speed Control of Separately Excited DC Motor 00:33:00 Module 16- Torque-Speed Characteristics of Series DC Motor 00:08:00 Module 17-Solved Example 1 on Speed Control 00:08:00 Module 18-Solved Example 2 on Speed Control 00:06:00 Module 19- Starting of DC Machine 00:14:00 Module 20- Armature Reaction in DC Machines 00:10:00 Module 21-Losses in DC Machines 00:04:00 Unit 3: Construction of Transformers Module 1- What is a Transformer 00:02:00 Module 2- Importance of Transformer 00:04:00 Module 3-Iron Core of Transformer 00:04:00 Module 4- Magnetic Circuit Inside Transformer 00:05:00 Module 5- Windings of Transformer 00:03:00 Module 6- Why are Windings Made of Copper 00:01:00 Module 7- Classification of Windings 00:05:00 Module 8- Insulating Material and Transformer Oil 00:02:00 Module 9- Conservator of Transformer 00:03:00 Module 10- Breather of Transformer 00:04:00 Module 11- Bushings of Transformer 00:04:00 Module 12- Tap Changer of Transformer 00:03:00 Module 13- Cooling Tubes of Transformer 00:01:00 Module 14- Buchholz Relay of Transformer 00:02:00 Module 15- Explosion Vent 00:02:00 Module 16- Methods of Cooling 00:03:00 Module 17-Types of Transformers 00:03:00 Module 18- Power Transformer and Distribution Transformer 00:05:00 Module 19- Single Phase Core Type Transformer 00:04:00 Module 20-Single Phase Shell Type Transformer 00:05:00 Module 21- 3 Phase Core Type 00:02:00 Module 22- 3 Phase Shell Type 00:01:00 Module 23- Comparison between Shell and Core CSA 00:01:00 Module 24- Comparison between Shell and Core Type 00:01:00 Module 25- Notes 00:03:00 Module 26-Video Explaining The Components in 3D and Real Life 00:05:00 Unit 4: Fundamentals of Magnetic Circuits Module 1- Introduction to Magnetic Circuits 00:02:00 Module 2- Induced Emf and Current 00:04:00 Module 3- Ampere Right Hand Rule 00:04:00 Module 4- Magnetic Circuit and Important Definitions 00:06:00 Module 5- Linear and Non Linear Materials 00:03:00 Module 6-Flux Linkage and Reluctance 00:04:00 Module 7- Analogy between Electric and Magnetic Circuits 00:06:00 Module 8- Fringing Effect 00:02:00 Module 9- Example 1 Magnetic Circuits 00:07:00 Module 10- Example 2 00:03:00 Module 11- Example 3 00:06:00 Module 12- Application on Magnetic Circuit - Transformers 00:04:00 Unit 5: Theoretical Part on Transformers Module 1- Introduction to Transformers 00:02:00 Module 2- Construction of Transformer 00:02:00 Module 3-Theory of Operation 00:04:00 Module 4- Ideal Transformer 00:05:00 Module 5-Non Ideal Transformer 00:02:00 Module 6- Effect of Loading on Transformer 00:03:00 Module 7- Transformer Regulation 00:03:00 Module 8- Transformer Losses 00:03:00 Module 9- Transformer Efficiency 00:05:00 Module 10- Transformer Rating 00:02:00 Module 11- Question 1 00:01:00 Module 12- Question 2 00:02:00 Module 13- Question 3 00:01:00 Module 14- Example 1 00:01:00 Module 15- Voltage Relation of Transformer 00:04:00 Module 16- Transformer Exact Equivalent Circuit 00:06:00 Module 17- Concept of Refereeing 00:04:00 Module 18- Approximate Equivalent Circuit 00:02:00 Unit 6: Synchronous Machines Module 1- Construction and Principle of Operation of Synchronous Generator 00:29:00 Module 2- Principle of Operation of Synchronous Motor 00:24:00 Module 3- Equivalent Circuit and Phasor Diagram of Non Salient Synchronous Machine 00:29:00 Module 4-Solved Example 1 on Non Salient Machine 00:05:00 Module 5-Solved Example 2 on Non Salient Machine 00:11:00 Module 6-Solved Example 3 on Non Salient Machine 00:07:00 Module 7- Solved Example 4 on Non Salient Machine 00:04:00 Module 8-Solved Example 5 on Non Salient Machine 00:07:00 Module 9-Solved Example 6 on Non Salient Machine 00:03:00 Module 10- Equivalent Circuit and Phasor Diagram of Salient Synchronous Machine 00:39:00 Module 11-Solved Example 1 on Salient Machine 00:09:00 Module 12- Solved Example 2 on Salient Machine 00:05:00 Module 13-Solved Example 3 on Salient Machine 00:10:00 Module 14- Parallel Operation of Two Generators 00:17:00 Module 15- Synchronization of Machine with Grid 00:10:00 Unit 7: Induction Machines Module 1- Construction and Theory of Operation of Induction Machines 00:27:00 Module 2- Equivalent Circuit and Power Flow in Induction Motor 00:23:00 Module 3- Torque-Speed Characteristics of Induction Motor 00:20:00 Module 4- Solved Example 1 on Induction Motor 00:08:00 Module 5-Solved Example 2 on Induction Motor 00:06:00 Module 6-Solved Example 3 on Induction Motor 00:06:00 Module 7-Solved Example 4 on Induction Motor 00:18:00 Module 8-Solved Example 5 on Induction Motor 00:13:00 Module 9- Methods of Speed Control of Induction Motor 00:27:00 Module 10- Methods of Starting of Induction Motor 00:21:00 Module 11-Solved Example on Motor Starter 00:15:00 Module 12- Principle of Operation of Doubly Fed Induction Generator 00:11:00 Module 13-Self Excited Induction Generator 00:08:00 Assignment Assignment - Electrical Machines for Electrical Engineering 00:00:00

Electrical Machines for Electrical Engineering
Delivered Online On Demand14 hours 20 minutes
£10.99

Electrical Engineering With Electric Circuits

4.5(3)

By Studyhub UK

Ignite your passion for the electrifying world with our course on 'Electrical Engineering With Electric Circuits'. Envision the realm where electricity comes alive, weaving intricate patterns that power our world. Journey with us as we illuminate foundational concepts, delve deep into circuit analysis, and unveil the magic behind operational amplifiers. With each unit, you'll unravel the mysteries of capacitors, inductors, and the fundamental laws governing them, forging a path towards mastery in electrical engineering. Learning Outcomes Develop a solid understanding of the foundational concepts in electrical engineering. Discover and apply the basic laws governing electric circuits. Employ various methods to analyse complex electrical circuits. Understand the principles behind circuit theorems and operational amplifiers. Gain proficiency in working with capacitors and inductors. Why choose this Electrical Engineering With Electric Circuits course? Unlimited access to the course for a lifetime. Opportunity to earn a certificate accredited by the CPD Quality Standards after completing this course. Structured lesson planning in line with industry standards. Immerse yourself in innovative and captivating course materials and activities. Assessments are designed to evaluate advanced cognitive abilities and skill proficiency. Flexibility to complete the Electrical Engineering With Electric Circuits Course at your own pace, on your own schedule. Receive full tutor support throughout the week, from Monday to Friday, to enhance your learning experience. Who is this Electrical Engineering With Electric Circuits course for? Aspiring electrical engineers seeking foundational knowledge. Technicians aiming for a deeper understanding of electric circuits. University students studying electrical engineering as a major. Hobbyists keen on diving into the world of circuits and electronics. Professionals in related fields aiming to expand their skill set. Career path Electrical Engineer: £25,000 - £55,000 Circuit Designer: £28,000 - £50,000 Operational Amplifier Specialist: £30,000 - £54,000 Electronics Technician: £20,000 - £40,000 System Analyst (Electrical Circuits): £32,000 - £57,000 Researcher in Electrical Engineering: £28,000 - £52,000 Prerequisites This Electrical Engineering With Electric Circuits does not require you to have any prior qualifications or experience. You can just enrol and start learning.This Electrical Engineering With Electric Circuits was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Certification After studying the course materials, there will be a written assignment test which you can take at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £4.99 Original Hard Copy certificates need to be ordered at an additional cost of £8. Course Curriculum Unit 1- Basic Concepts Module 1- What Is an Electric Circuit 00:02:00 Module 2-System of Units 00:07:00 Module 3- What Is an Electric Charge 00:05:00 Module 4- What Is an Electric Current 00:08:00 Module 5-Example 1 00:01:00 Module 6- Example 2 00:05:00 Module 7- Example 3 00:02:00 Module 8- What Is Voltage 00:07:00 Module 9- What Is Power 00:06:00 Module 10- What Is Energy 00:04:00 Module 11- Example 4 00:03:00 Module 12-Example 5 00:03:00 Module 13- Dependent and Independent Sources 00:05:00 Module 14- Example 6 Part 1 00:04:00 Module 15- Example 6 Part 2 00:01:00 Module 16- Application 1 Cathode Ray Tube 00:04:00 Module 17-Example 7 00:04:00 Module 18- Application 2 Electricity Bills 00:02:00 Module 19- Example 8 00:03:00 Unit 2- Basic Laws Module 1- Introduction to Basic Laws 00:01:00 Module 2- Definition of Resistance 00:06:00 Module 3- Ohm's Law 00:02:00 Module 4- Types of Resistances 00:06:00 Module 5- Open and Short Circuit 00:05:00 Module 6- Definition of Conductance 00:04:00 Module 7- Example 1 00:02:00 Module 8- Example 2 00:03:00 Module 9-Example 3 00:05:00 Module 10- Branch, Node and Loops 00:07:00 Module 11- Series and Parallel Connection 00:04:00 Module 12- KCL 00:04:00 Module 13- KVL 00:03:00 Module 14- Example 4 00:05:00 Module 15- Example 5 00:02:00 Module 16- Example 6 00:06:00 Module 17- Series Resistors and Voltage Division 00:07:00 Module 18-Parallel Resistors and Current Division 00:12:00 Module 19- Analogy between Resistance and Conductance 00:07:00 Module 20-Example 7 00:03:00 Module 21-Example 8 00:04:00 Module 22- Introduction to Delta-Wye Connection 00:06:00 Module 23-Delta to Wye Transformation 00:05:00 Module 24- Wye to Delta Transformation 00:07:00 Module 25-Example 9 00:03:00 Module 26- Example 10 00:15:00 Module 27- Application Lighting Bulbs 00:03:00 Module 28-Example 11 00:05:00 Unit 3- Methods of Analysis Module 1- Introduction to Methods of Analysis 00:02:00 Module 2- Nodal Analysis with No Voltage Source 00:15:00 Module 3-Example 1 00:04:00 Module 4-Cramer's Method 00:04:00 Module 5-Nodal Analysis with Voltage Source 00:07:00 Module 6- Example 2 00:02:00 Module 7- Example 3 00:13:00 Module 8-Mesh Analysis with No Current Source 00:10:00 Module 9-Example 4 00:04:00 Module 10- Example 5 00:06:00 Module 11-Mesh Analysis with Current Source 00:07:00 Module 12-Example 6 00:08:00 Module 13-Nodal Vs Mesh Analysis 00:04:00 Module 14-Application DC Transistor 00:04:00 Module 15-Example 7 00:04:00 Unit 4- Circuit Theorems Module 1-Introduction to Circuit theorems 00:02:00 Module 2-Linearity of Circuit 00:07:00 Module 3-Example 1 00:04:00 Module 4-Superposition Theorem 00:07:00 Module 5- Example 2 00:04:00 Module 6-Example 3 00:06:00 Module 7-Source Transformation 00:08:00 Module 8-Example 4 00:05:00 Module 9-Example 5 00:03:00 Module 10-Thevenin Theorem 00:10:00 Module 11-Example 6 00:06:00 Module 12-Example 7 00:05:00 Module 13- Norton's Theorem 00:05:00 Module 14-Example 8 00:04:00 Module 15-Example 9 00:05:00 Module 16-Maximum Power Transfer 00:05:00 Module 17-Example 10 00:03:00 Module 18-Resistance Measurement 00:05:00 Module 19-Example 11 00:01:00 Module 20-Example 12 00:04:00 Module 21-Summary 00:05:00 Unit 5- Operational Amplifiers Module 1-Introduction to Operational Amplifiers 00:03:00 Module 2-Construction of Operational Amplifiers 00:07:00 Module 3-Equivalent Circuit of non Ideal Op Amp 00:10:00 Module 4-Vo Vs Vd Relation Curve 00:04:00 Module 5-Example 1 00:09:00 Module 6-Ideal Op Amp 00:07:00 Module 7- Example 2 00:04:00 Module 8-Inverting Amplifier 00:05:00 Module 9-Example 3 00:02:00 Module 10-Example 4 00:02:00 Module 11-Non Inverting Amplifier 00:08:00 Module 12-Example 5 00:03:00 Module 13-Summing Amplifier 00:05:00 Module 14-Example 6 00:02:00 Module 15-Difference amplifier 00:06:00 Module 16-Example 7 00:08:00 Module 17-Cascaded Op Amp Circuits 00:06:00 Module 18-Example 8 00:04:00 Module 19-Application Digital to Analog Converter 00:06:00 Module 20-Example 9 00:04:00 Module 21-Instrumentation Amplifiers 00:05:00 Module 22-Example 10 00:01:00 Module 23-Summary 00:04:00 Unit 6- Capacitors and Inductors Module 1-Introduction to Capacitors and Inductors 00:02:00 Module 2-Capacitor 00:06:00 Module 3-Capacitance 00:02:00 Module 4-Voltage-Current Relation in Capacitor 00:03:00 Module 5-Energy Stored in Capacitor 00:06:00 Module 6-DC Voltage and Practical Capacitor 00:02:00 Module 7-Example 1 00:01:00 Module 8-Example 2 00:01:00 Module 9-Example 3 00:05:00 Module 10-Equivalent Capacitance of Parallel Capacitors 00:02:00 Module 11-Equivalent Capacitance of Series Capacitors 00:03:00 Module 12-Example 4 00:02:00 Module 13-Definition of Inductors 00:06:00 Module 14-Definition of Inductance 00:03:00 Module 15-Voltage-Current Relation in Inductor 00:03:00 Module 16-Power and Energy Stored in Inductor 00:02:00 Module 17-DC Source and Inductor 00:04:00 Module 18-Example 5 00:02:00 Module 19-Series Inductors 00:03:00 Module 20-Parallel Inductors 00:04:00 Module 21-Example 6 00:01:00 Module 22-Small Summary to 3 Basic Elements 00:02:00 Module 23-Example 7 00:05:00 Module 24-Application Integrator 00:05:00 Module 25-Example 8 00:03:00 Module 26-Application Differentiator 00:02:00 Module 27-Example 9 00:06:00 Module 28-Summary 00:05:00 Assignment Assignment - Electrical Engineering With Electric Circuits 00:00:00

Electrical Engineering With Electric Circuits
Delivered Online On Demand10 hours 22 minutes
£10.99

Electrical Engineering - Light Current System

4.5(3)

By Studyhub UK

Imagine a world where every flick of a switch, the press of a button, and the smooth operation of the modern marvels we often take for granted is made possible by the genius of electrical engineering. This course, 'Electrical Engineering - Light Current System,' is your gateway to understanding and mastering the intricacies of light current systems, from fire alarm to sound systems.  As the demand for skilled electrical engineers surges, with electrical engineering positions becoming increasingly pivotal in our technologically advancing world, this course offers a golden opportunity to step into a field where the electrical engineering salary reflects the critical nature of the work. By diving into this curriculum, learners will not only secure electrical engineering jobs but will also pave the way for innovation and safety in numerous industries. Learning Outcomes: Acquire a foundational understanding of light current systems, including fire alarms, MATV, and data systems. Develop the ability to design, install, and maintain modern CCTV and sound systems. Enhance problem-solving skills specific to the challenges encountered in electrical engineering apprenticeships. Prepare for a diverse range of electrical engineer jobs through comprehensive knowledge and understanding of light current technologies. Gain insights into project management and the ability to oversee complex electrical installations. Why buy this Electrical Engineering - Light Current System? Unlimited access to the course for a lifetime. Opportunity to earn a certificate accredited by the CPD Quality Standards and CIQ after completing this course. Structured lesson planning in line with industry standards. Immerse yourself in innovative and captivating course materials and activities. Assessments designed to evaluate advanced cognitive abilities and skill proficiency. Flexibility to complete the Course at your own pace, on your own schedule. Receive full tutor support throughout the week, from Monday to Friday, to enhance your learning experience. Unlock career resources for CV improvement, interview readiness, and job success. Certification After studying the course materials of the Electrical Engineering - Light Current System there will be a written assignment test which you can take either during or at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £5.99. Original Hard Copy certificates need to be ordered at an additional cost of £9.60. Who is this Electrical Engineering - Light Current System course for? Individuals with a keen interest in pursuing a career in electrical engineering. Technicians looking to upgrade their knowledge and secure better positions. Fresh graduates seeking electrical engineering apprenticeship opportunities. Professionals aiming to transition into electrical engineering jobs. Enthusiasts of technology and innovation looking to understand light current systems. Prerequisites This Electrical Engineering - Light Current System does not require you to have any prior qualifications or experience. You can just enrol and start learning.This Electrical Engineering - Light Current System was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Career path Light Current System Designer: £35,000 - £50,000 per annum Electrical Engineer in Fire Alarm Systems: £30,000 - £45,000 per annum CCTV and Security Systems Engineer: £28,000 - £42,000 per annum Data Systems Specialist: £32,000 - £48,000 per annum Sound System Engineer: £29,000 - £43,000 per annum Project Manager for Electrical Installations: £40,000 - £60,000 per annum Course Curriculum Unit 1- Light Current Fire Alarm System Module 1- Light Current Fire Alarm System Part 1 00:17:00 Module 2- Light Current Fire Alarm System Part 2 00:15:00 Module 3- Light Current Fire Alarm System Part 3 00:18:00 Module 4- Light Current Fire Alarm System Part 4 00:17:00 Module 5- Light Current Fire Alarm System Part 5 00:17:00 Module 6- Light Current Fire Alarm System Part 6 00:17:00 Unit 2- Light Current MATV and Telephone System Module 1- Light Current MATV System Part 1 00:14:00 Module 2- Light Current MATV System Part 2 00:17:00 Module 3- Light Current Telephone System 00:19:00 Unit 3- Light Current Data System Module 1- Light Current Data System Part 1 00:15:00 Module 2- Light Current Data System Part 2 00:20:00 Unit 4- Light Current CCTV System Module 1- Light Current CCTV System Part 1 00:14:00 Module 2- Light Current CCTV System Part 2 00:23:00 Unit 5- Light Current Sound System Module 1- Light Current Sound System Part 1 00:18:00 Module 2- Light Current Sound System Part 2 00:16:00

Electrical Engineering - Light Current System
Delivered Online On Demand4 hours 17 minutes
£10.99

MATLAB Simulink for Electrical Power Engineering

4.5(3)

By Studyhub UK

The 'MATLAB Simulink for Electrical Power Engineering' course focuses on practical applications and simulations using MATLAB and Simulink for power electronics, solar energy, DC motors, synchronous generators, and induction motors. It aims to provide participants with hands-on experience in electrical power engineering simulations and analysis using MATLAB and Simulink. Learning Outcomes: Understand the applications of matrices in MATLAB and solve non-linear equations using appropriate functions. Simulate power electronics circuits, including rectifiers, choppers, regulators, and inverters, using Simulink in MATLAB. Analyze and simulate solar energy systems and separately excited DC machines in MATLAB. Model and simulate synchronous generators connected to a small power system using MATLAB and Simulink. Simulate induction motors and study their equivalent circuits and torque-speed characteristics using Simulink. Implement PID controllers in Simulink and tune them for effective control in power systems simulations. Acquire hands-on skills in using MATLAB and Simulink to perform various electrical power engineering simulations. Apply MATLAB and Simulink tools to solve practical electrical power engineering problems. Develop an in-depth understanding of power electronics, motor simulations, and solar energy systems. Successfully complete the course with the ability to perform advanced electrical power engineering simulations using MATLAB and Simulink. Why buy this MATLAB Simulink for Electrical Power Engineering? Unlimited access to the course for forever Digital Certificate, Transcript, student ID all included in the price Absolutely no hidden fees Directly receive CPD accredited qualifications after course completion Receive one to one assistance on every weekday from professionals Immediately receive the PDF certificate after passing Receive the original copies of your certificate and transcript on the next working day Easily learn the skills and knowledge from the comfort of your home Certification After studying the course materials of the MATLAB Simulink for Electrical Power Engineering there will be a written assignment test which you can take either during or at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £5.99. Original Hard Copy certificates need to be ordered at an additional cost of £9.60. Who is this course for? This MATLAB Simulink for Electrical Power Engineering course is ideal for Students Recent graduates Job Seekers Anyone interested in this topic People already working in the relevant fields and want to polish their knowledge and skill. Prerequisites This MATLAB Simulink for Electrical Power Engineering does not require you to have any prior qualifications or experience. You can just enrol and start learning.This MATLAB Simulink for Electrical Power Engineering was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Career path As this course comes with multiple courses included as bonus, you will be able to pursue multiple occupations. This MATLAB Simulink for Electrical Power Engineering is a great way for you to gain multiple skills from the comfort of your home. Course Curriculum Unit 1- Applications on Matrices in MATLAB Module 1- Solving One Non Linear Equation in MATLAB Using Fzero Function 00:15:00 Module 2-Example 1 on Solving Multiple Non Linear Equations in MATLAB Using Fsolve Function 00:15:00 Module 3- Example 2 on Solving Multiple Non Linear Equations in Matlab Using Fsolve 00:13:00 Module 4-Application Multi Level Inverter Part 1 00:25:00 Module 5- Application Multi Level Inverter Part 2 00:05:00 Unit 2-Power Electronics Simulations Using Simulink in MATLAB Module 1-Introduction to MATLAB Simulations Using Simulink 00:04:00 Module 2-Half Wave Uncontrolled Rectifier with R Load Principle of Operation 00:21:00 Module 3- Half Wave Controlled Rectifier R Load Principle of Operation 00:05:00 Module 4-Simulation of Half Wave Controlled Rectifier Using Simulink In Matlab 00:26:00 Module 5- Principle of Operation of Fully Controlled Bridge Rectifier Part 1 00:06:00 Module 6- Principle of Operation of Fully Controlled Bridge Rectifier Part 2 00:06:00 Module 7-Simulation of Bridge Controlled Rectifier 00:16:00 Module 8-AC Chopper with R Load Principle of Operation 00:14:00 Module 9- Simulation of AC Chopper with R and RL Loads in MATLAB 00:11:00 Module 10- Buck Regulator Principle of Operation Part 1 00:16:00 Module 11-Buck Regulator Principle of Operation Part 2 00:17:00 Module 12-Simulation of Buck Regulator in MATLAB 00:14:00 Module 13-Boost Regulator Principle of Operation 00:23:00 Module 14- Simulation of Boost Regulator in MATLAB 00:12:00 Module 15-Buck-Boost Regulator Principle of Operation 00:17:00 Module 16- Simulation of Buck-Boost Regulator 00:09:00 Module 17- Single Phase Half Bridge R-Load 00:15:00 Module 18- Single Phase Half Bridge RL-Load 00:08:00 Module 19-Simulation of Single Phase Half Bridge Inverter 00:18:00 Module 20-Single Phase Bridge Inverter R-Load 00:06:00 Module 21-Single Phase Bridge Inverter RL-Load 00:07:00 Module 22-Simulation of Single Phase Bridge Inverter 00:10:00 Module 23-Three Phase Inverters and Obtaining The Line Voltages 00:15:00 Module 24-Three Phase Inverters and Obtaining The Phase Voltages 00:17:00 Module 25-Simulation of Three Phase Inverter 00:17:00 Module 26-Simulation of Charging and Discharging Capacitor Using Matlab 00:10:00 Unit 3- Solar Energy Simulation Using Simulink in MATLAB Module 1-Separately Excited DC Machine 00:21:00 Module 2-DC Motor Modelling without Load Using Simulink in MATLAB 00:25:00 Module 3-DC Motor Modelling with Load Using Simulink in MALTAB 00:23:00 Module 4-DC Motor Block Simulation Using Power Library in MATLAB 00:16:00 Unit 4- DC Motor Simulation Using Simulink in MATLAB Module 1-Construction and Principle of Operation of Synchronous Generator 00:29:00 Module 2-Equivalent Circuit and Phasor Diagram of Non Salient Synchronous Machine 00:29:00 Module 3-Equivalent Circuit and Phasor Diagram of Salient Synchronous Machine 00:39:00 Module 4-Simulation of Synchronous Machine Connected to Small Power System 00:38:00 Unit 5- Induction Motor Simulation Using Simulink in MATLAB Module 1-Construction and Theory of Operation of Induction Machines 00:27:00 Module 2-Equivalent Circuit and Power Flow in Induction Motor 00:23:00 Module 3-Torque-Speed Characteristics of Induction Motor 00:20:00 Module 4- Simulation of Induction Motor or Asynchronous Motor Using Simulink 00:33:00 Unit 6- Synchronous Generator Simulation in Simulink of MATLAB Module 1- Importing Data from PSCAD Program for Fault Location Detection to MATLAB Program 00:37:00 Unit 7- Power System Simulations Module 1-How to Implement PID Controller in Simulink of MATLAB 00:14:00 Module 2-Tuning a PID Controller In MATLAB Simulink 00:17:00 Assignment Assignment - MATLAB Simulink for Electrical Power Engineering 00:00:00

MATLAB Simulink for Electrical Power Engineering
Delivered Online On Demand13 hours 24 minutes
£10.99

Electrician (Electrical Engineering) - 8 Courses Bundle

By NextGen Learning

Ever wondered about the secrets that lie within the walls of your home, giving life to your devices and appliances? The answer lies in the realm of electricity. Welcome to the Electrician (Electrical Engineering) course bundle, an extensive theoretical compilation crafted for aspiring electrical engineers. This thoughtfully curated bundle, comprising five comprehensive courses, is your single-stop solution to acquiring profound knowledge in the field of electrical engineering. Each course, from Basic Electricity to Electronic & Electrical Devices Maintenance & Troubleshooting, works in harmony, building a solid foundation and progressively introducing more complex topics, all at an unbeatable price. Journey into the fascinating world of electricity with this all-inclusive Electrician (Electrical Engineering) course bundle. You'll uncover the mysteries of electric currents, understand the power of electric circuits, and unlock the potential of electrical machines. Together, we will dive deep into the theoretical aspects, equipping you with a holistic understanding of this energising field. The five CPD Accredited courses are: Basic Electricity Course Electrical Machines for Electrical Engineering Electric Circuits for Electrical Engineering Electric Power Metering for Single and Three Phase Systems Electronic & Electrical Devices Maintenance & Troubleshooting Learning Outcomes Gain a solid understanding of basic electricity concepts. Learn the inner workings of electrical machines. Acquire theoretical knowledge about electric circuits. Understand single and three-phase electric power metering systems. Discover the principles of electronic and electrical devices maintenance. Develop troubleshooting skills for electronic and electrical devices. "Basic Electricity Course" - Kickstart your journey by exploring the foundational principles of electricity. "Electrical Machines for Electrical Engineering" - Dive into the core mechanisms of electrical machines and their theoretical functioning. "Electric Circuits for Electrical Engineering" - Unlock the science behind electric circuits and their practical applications. "Electric Power Metering for Single and Three Phase Systems" - Decode the world of power metering for both single and three-phase systems. "Electronic & Electrical Devices Maintenance & Troubleshooting" - Understand the crucial aspects of maintaining and troubleshooting electronic and electrical devices. "Unlock Potential" - With all these courses at your fingertips, you are ready to unlock your full potential in the realm of electrical engineering. "Invest in Knowledge" - Take this opportunity to invest in yourself, and reap the benefits of comprehensive knowledge in electrical engineering. Enrol now and embark on your educational journey in the exciting world of electricity. CPD 50 CPD hours / points Accredited by CPD Quality Standards Who is this course for? Individuals aspiring to gain theoretical knowledge in electrical engineering. Professionals seeking to deepen their understanding of electrical systems. Students of engineering looking to supplement their studies. Career changers aiming to enter the electrical field. Career path Electrical Engineer - £25K to 50K/year. Electrical Project Manager - £30K to 60K/year. Energy Systems Specialist - £30K to 55K/year. Power Distribution Engineer - £35K to 60K/year. Electrical Design Engineer - £27K to 55K/year. Maintenance Electrician - £23K to 45K/year. Certificates Certificate Of Completion Digital certificate - Included Certificate Of Completion Hard copy certificate - Included You will get a complimentary Hard Copy Certificate.

Electrician (Electrical Engineering) - 8 Courses Bundle
Delivered Online On Demand26 hours
£39