• Professional Development
  • Medicine & Nursing
  • Arts & Crafts
  • Health & Wellbeing
  • Personal Development

25 German courses in Leominster

About this Virtual Instructor Led Training (VILT) This course will provide a comprehensive, foundational content for a wide range of topics in power system operation and control. With the growing importance of grid integration of renewables and the interest in smart grid technologies, it is more important than ever to understand the fundamentals that underpin electrical power systems. This course provides a thorough understanding of all basic terminology and concepts of electrical systems, structure of a power system, transmission line parameters, insulators, high-voltage direct current transmission, substation and neutral grounding, distribution system, circuit breakers, relaying and protection, power system stability, economic operation of power systems, load frequency control, voltage and reactive power control, renewable energy sources, restructuring of electrical power systems, and smart grids. This course is a MUST for practitioners, consultants, engineers of all disciplines, managers, technicians and all technical personnel who need to learn about electrical power systems. Training Objectives Basic Terminology and Concepts of Electrical Systems: Gain an understanding of the basic terminology and concepts of electrical systems and the structure of a power system Transmission Line Parameters: Learn in detail all the transmission line parameters including line resistance, line inductance, transposition of transmission lines, and capacitance of transmission lines Insulators: Understand thoroughly all the various types of insulators, pin type insulators, suspension type or disc insulators, strain insulators, and testing of insulators High-Voltage Direct Current Transmission: Determine the advantages and disadvantages of high voltage direct current transmission, and gain an understanding of all the features of high-voltage direct current transmission Substations and Neutral Grounding: Gain a detailed understanding of all substation equipment, factors governing the layout of substations, station transformers, elements to be earthed in a substation, power system earthing, earthing transformers, bus bar arrangements and gas-insulated substations Distribution System: Learn about the effects of voltage on the conductor volume, distributor fed from one end, distributors fed from both ends at the same voltage, distributors fed from both ends at different voltages, and alternating current distribution Circuit Breakers: Learn about the classification of circuit breakers, plain-break oil circuit breakers, air break circuit breaker, air blast circuit breakers, vacuum circuit breakers, SF6 circuit breakers, rating and testing of circuit breakers Relaying and Protection: Learn all the requirements of relaying, zones of protection, primary and backup protection, classification of relays, electromagnetic relays, induction relays, feeder protection, phase fault protection, reactance relay, static overcurrent relay, differential protection, transformer protection, Buchholz relays, alternator protection restricted earth fault protection, rotor earth fault protection, and negative-sequence protection Economic Operation of Power Systems: Gain an understanding of steam power plants, heat rate characteristics and characteristics of hydro plants Load Frequency Control: Learn about speed governing mechanism, speed governor, steady state speed regulations and adjustment of governor characteristics Voltage and Reactive Power Control: Gain an understanding of impedance and reactive power, system voltage and reactive power, voltage regulation and power transfer Renewable Energy Sources: Learn about solar power, wind power, geothermal energy, biomass and tidal power Restructuring of Electrical Power Systems: Gain an understanding of smart grids, smart grid components, smart grid benefits, and open smart grid protocol Target Audience Engineers of all disciplines Managers Technicians Maintenance personnel Other technical individuals Course Level Basic or Foundation Training Methods The VILT will be delivered online in 5 half-day sessions comprising 4 hours per day, with 2 x 10 minutes break per day, including time for lectures, discussion, quizzes and short classroom exercises. Additionally, some self-study will be requested. Participants are invited but not obliged to bring a short presentation (10 mins max) on a practical problem they encountered in their work. This will then be explained and discussed during the VILT. A short test or quiz will be held at the end the course. The instructor relies on a highly interactive training method to enhance the learning process. This method ensures that all the delegates gain a complete understanding of all the topics covered. The training environment is highly stimulating, challenging, and effective because the participants will learn by case studies which will allow them to apply the material taught to their own organization. Each delegate will receive a copy of the following materials written by the instructor: 'ELECTRICAL EQUIPMENT HANDBOOK' published by McGraw-Hill in 2003 (600 pages) Introduction to Power Systems Manual (500 pages) Trainer Your specialist course leader has more than 32 years of practical engineering experience with Ontario Power Generation (OPG), one of the largest electric utility in North America. He was previously involved in research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories. While working at OPG, he acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time, he worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment. Later, he worked as the manager of a section dedicated to providing training for the staff at the power stations. The training provided by him covered in detail the various equipment and systems used in power stations. In addition, he has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. He has been consistently ranked as 'Excellent' or 'Very Good' by the delegates who attended his seminars and lectures. He written 5 books for working engineers from which 3 have been published by McGraw-Hill, New York. Below is a list of the books authored by him; Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011. Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003. Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012. Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999). Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999). Furthermore, he has received the following awards: The first 'Excellence in Teaching' award offered by PowerEdge, Singapore, in December 2016 The first 'Excellence in Teaching' award offered by the Professional Development Center at University of Toronto (May, 1996). The 'Excellence in Teaching Award' in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East). Awarded graduation 'With Distinction' from Dalhousie University when completed Bachelor of Engineering degree (1983). Lastly, he was awarded his Bachelor of Engineering Degree 'with distinction' from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information about post training coaching support and fees applicable for this. Accreditions And Affliations

Introduction to Power Systems
Delivered in Internationally or OnlineFlexible Dates
£1,431 to £2,700

About this Training Course This 3 full-day course will provide a comprehensive understanding of the various types of transformer maintenance including breakdown maintenance, preventive maintenance, total productive maintenance, condition-based maintenance, proactive maintenance, and reliability-centered maintenance. All the expected problems in dry and oil-filled transformers will be discussed in detail. All the diagnostics, troubleshooting and maintenance required to ensure adequate operation of transformers will be covered thoroughly. This course will focus on maximizing the efficiency, reliability, and longevity of all types of transformers by providing an understanding of all commissioning requirements, repair and refurbishment methods of transformers. Training Objectives Equipment Diagnostics and Inspection: Learn in detail all the diagnostic techniques and inspections required of critical components of transformers Equipment Testing: Understand thoroughly all the routine tests, type tests, and special tests required for the various types of transformers Equipment Maintenance and Troubleshooting: Determine all the maintenance and troubleshooting activities required to minimize transformer downtime and operating cost Equipment Repair and Refurbishment: Gain a detailed understanding of the various methods used to repair and refurbish transformers Efficiency, Reliability, and Longevity: Learn the various methods used to maximize the efficiency, reliability, and longevity of transformers Equipment Sizing: Gain a detailed understanding of all the calculations and sizing techniques used for transformers Design Features: Understand all the design features that improve the efficiency and reliability of transformers Equipment Selection: Learn how to select all types of transformers by using the performance characteristics and selection criteria that you will learn in this course Equipment Commissioning: Understand all the commissioning requirements for transformers Equipment Codes and Standards: Learn all the codes and standards applicable for transformers Equipment Causes and Modes of Failure: Understand the causes and modes of failure in transformers System Design: Learn all the requirements for designing different types of transformer systems Target Audience Engineers of all disciplines Managers Technicians Maintenance personnel Other technical individuals (this course is suitable for individuals who do not have an electrical background) Course Level Basic or Foundation Training Methods Your specialist course leader relies on a highly interactive training method to enhance the learning process. This method ensures that all participants gain a complete understanding of all topics covered. The training environment is highly stimulating, challenging, and effective because the participants will learn by case studies which will allow them to apply the material taught to their own organization. Each delegate will receive a copy of the following materials written by the instructor: Excerpt of the relevant chapters from the 'ELECTRICAL EQUIPMENT HANDBOOK' published by McGraw-Hill in 2003 (600 pages) Transformer Testing, Maintenance and Commissioning Manual (covering all the tests, maintenance activities, protective systems and all commissioning procedures for all types of transformers - 350 pages) Trainer Your specialist course leader has more than 32 years of practical engineering experience with Ontario Power Generation (OPG), one of the largest electric utility in North America. He was previously involved in research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories. While working at OPG, he acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time, he worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment. Later, he worked as the manager of a section dedicated to providing training for the staff at the power stations. The training provided by him covered in detail the various equipment and systems used in power stations. In addition, he has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. He has been consistently ranked as 'Excellent' or 'Very Good' by the delegates who attended his seminars and lectures. He written 5 books for working engineers from which 3 have been published by McGraw-Hill, New York. Below is a list of the books authored by him; Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011. Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003. Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012. Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999). Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999). Furthermore, he has received the following awards: The first 'Excellence in Teaching' award offered by PowerEdge, Singapore, in December 2016 The first 'Excellence in Teaching' award offered by the Professional Development Center at University of Toronto (May, 1996). The 'Excellence in Teaching Award' in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East). Awarded graduation 'With Distinction' from Dalhousie University when completed Bachelor of Engineering degree (1983). Lastly, he was awarded his Bachelor of Engineering Degree 'with distinction' from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information post training support and fees applicable Accreditions And Affliations

Transformer Maintenance
Delivered in Internationally or OnlineFlexible Dates
£2,235 to £2,599

Heat Rate Optimization of Coal Power Plants

By EnergyEdge - Training for a Sustainable Energy Future

About this Virtual Instructor Led Training (VILT)  This 5 half-day virtual course provides a detailed description of all the methods used to reduce the heat rate (increase the efficiency) of pulverized coal and circulating fluidized bed (CFB) coal power plants. All the processes, operational and maintenance activities, capital projects, technical options, potential initiatives and incentives to implement upgrades/repairs for increasing the plant efficiency will be covered in detail. Training Objectives Calculate the Heat Rate of Coal Power Plants: Learn all the methods used to calculate the heat rate of coal power plants Benefits of Lowering the Heat Rate of Coal Power Plants: Understand all the benefits of lowering the heat rate of coal power plants Methods Used to Improve Coal Power Plants Heat Rate: Gain a thorough understanding of all the methods used to improve the heat rate of coal power plants Processes, Operational and Maintenance Activities: Discover all the processes, operational and maintenance activities used to improve the heat rate of coal power plants Capital Projects Used to Improve the Heat Rate: Learn about all the capital projects used to improve the heat rate of coal power plants Technical Options for Improving the Heat Rate: Understand all the technical options used to improve the heat rate of coal power plants Potential Initiatives and Incentives to Implement Upgrades/Repairs for Improving the Heat Rate: Discover all the potential initiatives and incentives to implement upgrades/repairs for improving the heat rate of coal power plants Factors Affecting Coal Power Plant Efficiency and Emissions: Learn about all the factors which affect coal power plants efficiency and emissions Areas in Pulverized Coal and Circulating Fluidized Bed (CFB) Power Plants where Efficiency Loss Can Occur: Discover all the areas in pulverized coal and circulating fluidized bed (CFB) power plants where efficiency loss can occur Optimize the Operation of Coal Power Plant Equipment and Systems to improve the Plant Heat Rate: Understand all the techniques and methods used to optimize the operation of coal power plant equipment and systems to improve the plant heat rate Coal Power Plant Equipment and Systems: Learn about various coal power plant equipment and systems including boilers, superheaters, reheaters, steam turbines, governing systems, deaerators, feedwater heaters, coal-handling equipment, transformers, generators and auxiliaries Target Audience Engineers of all disciplines Managers Technicians Maintenance personnel Other technical individuals Training Methods The VILT will be delivered online in 5 half-day sessions comprising 4 hours per day, with 1 x 10 minutes break per day, including time for lectures, discussion, quizzes and short classroom exercises. Additionally, some self-study will be requested. Participants are invited but not obliged to bring a short presentation (10 mins max) on a practical problem they encountered in their work. This will then be explained and discussed during the VILT. A short test or quiz will be held at the end the course. The instructor relies on a highly interactive training method to enhance the learning process. This method ensures that all the delegates gain a complete understanding of all the topics covered. The training environment is highly stimulating, challenging, and effective because the participants will learn by case studies which will allow them to apply the material taught to their own organization. Trainer Your specialist course leader has more than 32 years of practical engineering experience with Ontario Power Generation (OPG), one of the largest electric utility in North America. He was previously involved in research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories. While working at OPG, he acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time, he worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment. Later, he worked as the manager of a section dedicated to providing training for the staff at the power stations. The training provided by him covered in detail the various equipment and systems used in power stations. In addition, he has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. He has been consistently ranked as 'Excellent' or 'Very Good' by the delegates who attended his seminars and lectures. He written 5 books for working engineers from which 3 have been published by McGraw-Hill, New York. Below is a list of the books authored by him; Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011. Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003. Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012. Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999). Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999). Furthermore, he has received the following awards: The first 'Excellence in Teaching' award offered by PowerEdge, Singapore, in December 2016 The first 'Excellence in Teaching' award offered by the Professional Development Center at University of Toronto (May, 1996). The 'Excellence in Teaching Award' in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East). Awarded graduation 'With Distinction' from Dalhousie University when completed Bachelor of Engineering degree (1983). Lastly, he was awarded his Bachelor of Engineering Degree 'with distinction' from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information about post training coaching support and fees applicable for this. Accreditions And Affliations

Heat Rate Optimization of Coal Power Plants
Delivered in Internationally or OnlineFlexible Dates
£1,324 to £2,499

AgilePM Practitioner: In-House Training

By IIL Europe Ltd

AgilePM® Practitioner: In-House Training This course offers preparation for the Practitioner-level examination to gain the APMG-International™ / Agile Project Management Practitioner Certification. Agile Project Management (AgilePM) is the result of collaboration between APMG-International and The DSDM Consortium. DSDM (Dynamic Systems Development Method) is the longest-established Agile method, launched in 1995, and is the only Agile method to focus on the management of Agile projects. The method has evolved over the years and the DSDM Agile Project Framework is the latest version of which AgilePM is a subset. DSDM has always operated predominantly in the corporate environment and has consistently demonstrated its ability to successfully work with and complement existing corporate processes. APMG-International is a global Examination Institute accredited by The APM Group Ltd. It is one of the Examination Institutes accredited by AXELOS. APMG-International has regional offices located in Australia, China, Denmark, Germany, the Netherlands, Malaysia, the United States, and the United Kingdom. Their portfolio of qualifications includes the Best Practice qualifications of ITIL®, PRINCE2®, MSP®, M_o_R®, and P3O®. AgilePM is one of their specialist management qualifications, which also include Change Management and Service Catalogue. The course covers all the Practitioner elements of the AgilePM Handbook v2 with: Clear explanations of the method and practical examples provided by your course tutor Sample exam paper for the Practitioner-level exams to enrich your knowledge and understanding A case study to allow you to practice the application of the method to an agile project The Traditional Classroom option includes the Practitioner exam to provide you with the right opportunity to verify your new skill set by way of a professional qualification The Virtual Classroom option includes a Practitioner exam voucher to allow you to choose the date and time of your online exam to verify your new skill set by way of a professional qualification What You Will Learn You will learn how to: Identify and apply the concepts, tools, and techniques described in Section 2 (Digging Deeper) of the APMG-International's Agile Project Management Handbook (v2.0) to agile projects Tailor and customize AgilePM to suit the needs of different projects Use AgilePM in conjunction with other project management methods such as PRINCE2® Prepare yourself for the Practitioner exam in AgilePM Roles and Responsibilities - The PM View The roles Key project manager relationships Agile Project Management - Through the Lifecycle The DSDM process and the project lifecycle Project management focus phase by phase The Effective Use of Products The products Deliver on Time - Combining MoSCoW & Timeboxing Ensuring effective prioritisation Bringing MoSCoW and timeboxing together People, Teams, and Interactions Effective communication Collaboration Requirements and User Stories What is a requirement? User stories Estimating - How and When Coping with uncertainty Estimating through the lifecycle Project Planning through the Lifecycle Planning in a DSDM project Planning activities phase by phase Quality - Never Compromise Quality What do we mean by quality? Solution and process quality Risk Management Project risk How DSDM helps mitigate project risk Tailoring the Approach The project approach questionnaire Summary and Next Steps

AgilePM Practitioner: In-House Training
Delivered in London or UK Wide or OnlineFlexible Dates
£1,895

Commissioning of Combined Cycle Power Plants

By EnergyEdge - Training for a Sustainable Energy Future

About this Course This 5 full-day course provides a comprehensive understanding of all the commissioning procedures for combined cycle power plants. The Commissioning Management System (CMS) of combined cycle power plants is covered in detail in this course. This includes all the commissioning procedures and documents, purpose of commissioning, responsibilities, system description, organization, working parties, test teams, documentation, testing and commissioning schedules, test reports, safety, plant certification, and plant completion report. The course provides also a thorough understanding of all the commissioning requirements for gas turbines, steam turbines and auxiliaries, generator and auxiliaries, electrical equipment, switchgear equipment, switchgear and transformers. All the stages of the commissioning procedure are covered in-depth in this course. This includes preparation - planning various activities, pre-commissioning checks and tests, typical commissioning schedule, detailed tests and commissioning procedures and instructions for every component in a combined cycle power plant, instrumentation, trial run of the equipment, safety and precautions, commissioning of combined cycle power plant systems, safety rules clearance certificates, procedure for the control and handling of defects, commissioning reports, operational testing, first fire, generator synchronization, performance testing, heat rate testing, emission testing, contract testing, CO2 concentration tests, electrical full-load rejection test, duct burner testing, partial load stability test, and reliability test. This course is a MUST for anyone who is involved in the pre-commissioning or commissioning of any combined cycle power plant equipment because it provides detailed pre-commissioning checks and tests, and detailed tests and commissioning procedures and instructions for every component in a combined cycle power plant. In addition, the seminar provides an in-depth coverage of all preparation, planning activities, commissioning schedules, trial run of each combined cycle power plant equipment, safety and precautions, safety rules clearance certificates, procedures for handling defects, and commissioning reports. Training Objectives Pre-commissioning Checks and Tests, Detailed Tests and Commissioning Procedures and Instructions for Every Equipment in Combined Cycle Power Plants: Gain a thorough understanding of all pre-commissioning checks and tests, and all commissioning procedures and instructions for every equipment in combined cycle power plants Commissioning Management System (CMS) of Combined Cycle Power Plants: Discover the benefits of the CMS of combined cycle power plants including all commissioning procedures and documents, purpose of commissioning, responsibilities, system description, organization, working parties, test teams, documentation, testing and commissioning schedules, test reports, safety, plant certification, and plant completion report Commissioning Procedures and Instructions for Heat Recovery Steam Generators, Air Blow and Steam Blow of Steam and Gas Piping in Combined Cycle Power Plants: Learn about the commissioning procedures and instructions for heat recovery steam generators, chemical cleaning of heat recovery steam generators, air blow and gas blow of steam and gas piping in combined cycle power plants, safety valve setting and soot blowers Commissioning Procedures and Instructions for Gas Turbines and Steam Turbines: Gain a thorough understanding of all the commissioning procedures and instructions for gas and steam turbines and auxiliaries including acid cleaning of oil pipelines, lubrication and governing system (oil flushing and hydraulic testing), jacking oil system, governing system, regenerative system, barring gear, vacuum tightness test, first rolling of turbine and data logging Commissioning Procedures and Instructions for Generator and Auxiliaries: Discover all the commissioning procedures and instructions for generator and auxiliaries including generator, seal oil system, hydrogen gas system, stator water system, rolling and start-up of generators Commissioning Procedures and Instructions for Electrical Equipment: Learn about all the commissioning procedures and instructions for electrical equipment including switchyard equipment, switchgear, transformers and motors Operational Testing, Performance Testing, Heat Rate Testing, Emission Testing of Combine Cycle Power Plants: Gain a thorough understanding of operational testing, first fire, generator synchronization, performance testing, heat rate testing, emission testing, contract testing, CO2 concentration tests, electrical full-load rejection test, duct burner testing, partial load stability test, and reliability test of combined cycle power plants Target Audience Engineers of all disciplines Managers Technicians Maintenance personnel Other technical individuals Training Methods The instructor relies on a highly interactive training method to enhance the learning process. This method ensures that all the delegates gain a complete understanding of all the topics covered. The training environment is highly stimulating, challenging, and effective because the participants will learn by case studies which will allow them to apply the material taught to their own organization. Trainer Your specialist course leader has more than 32 years of practical engineering experience with Ontario Power Generation (OPG), one of the largest electric utility in North America. He was previously involved in research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories. While working at OPG, he acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time, he worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment. Later, he worked as the manager of a section dedicated to providing training for the staff at the power stations. The training provided by him covered in detail the various equipment and systems used in power stations. In addition, he has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. He has been consistently ranked as 'Excellent' or 'Very Good' by the delegates who attended his seminars and lectures. He written 5 books for working engineers from which 3 have been published by McGraw-Hill, New York. Below is a list of the books authored by him; Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011. Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003. Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012. Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999). Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999). Furthermore, he has received the following awards: The first 'Excellence in Teaching' award offered by PowerEdge, Singapore, in December 2016 The first 'Excellence in Teaching' award offered by the Professional Development Center at University of Toronto (May, 1996). The 'Excellence in Teaching Award' in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East). Awarded graduation 'With Distinction' from Dalhousie University when completed Bachelor of Engineering degree (1983). Lastly, he was awarded his Bachelor of Engineering Degree 'with distinction' from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information post training support and fees applicable Accreditions And Affliations

Commissioning of Combined Cycle Power Plants
Delivered in Internationally or OnlineFlexible Dates
Price on Enquiry

Educators matching "German"

Show all 2
Black's Academy

black's academy

London

AQA A level Mathematics 7357 AS level Mathematics 7356 GCSE higher level Mathematics 8300H GCSE foundation level Mathematics 8300F Edexcel A level Mathematics 9MA0 AS level Mathematics 8MA0 GCSE higher level Mathematics 1MA1H GCSE foundation level Mathematics 1MA1F OCR A level Mathematics H240 AS level Mathematics H230 GCSE higher level Mathematics J560 GCSE foundation level Mathematics Other courses IGCSE extended level Mathematics 0580 Scholastic Apititude Test (USA Exam) GED (USA Exam) All other exams Click on any of the above links to obtain free resources Book free diagnostic now blacksacademy symbol Director Peter Fekete Educational consultancy | Curriculum design | Courses for adults | Public speaking | Publications CONTACT a CONTENT OF THE REMOTE LEARNING SYSTEM * US GRADE 6 / UK GCSE GRADE 2–3 1. Addition and subtraction 2. Starting number sequences 3. Further number sequences part I 4. Multiplication to 8 x 8 5. Further number sequences part II 6. Multiplication to 12 x 12 7. Square numbers 8. Positive and negative numbers 9. Sums 10. Shapes and perimiters 11. Measurement and areas 12. Reading information 14. Understanding fractions 15. Decimals 16. Percentages 17. Long multiplication 18. Beginning algebra 19. Beginning probability 20. Beginning geometry 21. Properties of numbers 22. Telling the time 23. Geometry in three dimensions US GRADE 7 / UK GCSE GRADE 4 1. Deeper understanding of number 2. Combinations 3. Long division 4. Operations 5. Practical problems 6. Order and type of numbers 7. Measurement 8. Time and time management 9. Fractions 10. Organising information 11. Ratio and proportion 12. Probability 13. Angles 14. Visual reasoning 15. Bearings 16. Working in two dimensions 17. Working in three dimensions 18. Transformation geometry 19. Continuing algebra US GRADE 8 / UK GCSE GRADE 5–6 1. Patterns and pattern recognition 2. Lines, regions and inequalities 3. Mastering fractions 4. Types of number 5. More about triangles 6. Measurement and computation 7. Proportionality 8. Working with space 9. Indices 10. Further work with ratio 11. Investments 12. Further algebra 13. Quadrilaterals and polygons 14. Speed and displacement 15. Continuing with probability 16. Describing data US GRADE 9 / UK GCSE GRADE 6–7 1. Further proportionality 2. Congruency 3. The tricky aspects of algebra 4. Lines and equations 5. Basic formal algebra 6. Analysis and display of data 7. Graphing functions 8. Dimension and algebra 9. Algebraic fractions 10. Circle theorems 11. Algebraic factors 12. Simultaneous equations 13. Velocity and acceleration 14. Proportionality and scatter 15. Number puzzles US GRADE 10/ UK GCSE GRADE 7–8 1. Transpositions 2. Patterns and pattern recognition 3. Algebraic manipulations 4. Quadratics 5. Surds 6. Linear inequalities 7. Functions 8. Trigonometry 9. Systems of linear equations 10. Further presentation and analysis of data 11. Polynomial functions 12. Algebraic products 13. Finding roots 14. Intersection of lines and curves 15. Indices and index equations US GRADE 11/ UK GCSE GRADE 8–9 1. Completing the square 2. Venn diagrams 3. Coordinate geometry with straight lines 4. Further trigonometry 5. Transformations of curves 6. Modulus 7. Basic vectors 8. Quadratic inequalities 9. The quadratic discriminant 10. Arcs, sectors and segments 11. Circles, curves and lines 12. Probability and Venn diagrams 13. Functions, domains and inverses 14. Trigonometric functions 15. Recurrence relations 16. Further elementary vectors FREE LEGACY RESOURCES Business Studies, Economics, History, Mathematics, Philosophy, Sociology Business Studies PEOPLE AND ORGANISATIONS 1. Management structures and organisations 2. Leadership and management styles 3. Classical theory of motivation 4. Human relations school 5. Management by objectives 6. Workforce planning 7. Recruitment 8. Payment systems MARKETING 1. The economic problem 2. Money and exchange 3. Price determination 4. Determinants of demand 5. Market analysis 6. Marketing and the product life cycle 7. Objectives and marketing EXTERNAL INFLUENCES 1. Stakeholders 2. Business ethics 3. Market conditions 4. Business and the trade cycle 5. Business and technological change 6. Business and inflation 7. Business and exchange rates 8. Business and unemployment ACCOUNTING & FINANCE 1. Cash Flow Management 2. Costs, Profits & Breakeven Analysis 3. Budgeting & Variance Analysis 4. Sources of Finance 5. Profit & Loss Account 6. The Balance Sheet 7. Depreciation by the fixed-rate method 8. Reducing Balance Method 9. Stock Evaluation 10. Working Capital and Liquidity 11. Accounting Principles and Window Dressing 12. Costing and Management Accounting 13. Investors and the Corporate Life Cycle 14. Investment Appraisal: Average Rate of Return 15. Investment Appraisal: Payback Method 16. Investment Appraisal: Net Present Value 17. Investment Appraisal: Internal Rate of Return 18. Profitability Ratios 19. Liquidity Ratios 20. Efficiency and shareholder ratios 22. Gearing and Risk 23. Net Asset Value Economics MARKETS & MARKET FAILURE 1. The economic problem 2. Productive and allocative efficiency 3. Money and exchange 4. Price determination 5. The money market 6. Introduction to the labour market 7. The determinants of demand 8. Supply and elasticity of supply 9. Excess supply and excess capacity 10. Elasticity of demand 11. Market structures 12. Income and cross elasticity 13. Market failure 14. Factor immobility 15. Public and private goods 16. Merit and non-merit goods 17. Cost-benefit analysis 18. Competition policy 19. Market failure and government intervention History ANCIENT HISTORY 1. Prehistory of Greece 2. Mycenae, the Heroic Age c.1550—1125 BC 3. The Greek Middle Ages c.1125—c.700 BC 4. The Greek Tyrannies c. 650—510 BC 5. Sparta 6th and 7th centuries BC 6. Athens and Solon 7. The early inhabitants of Italy 8. The Etruscans 9. Early Roman History up to Tarquin GERMANY & EUROPE 1870—1939 1. Social Change from 1870 to 1914 2. Socialism in Europe 1870 to 1914 3. The Balance of Power in Europe 1870 4. Anti Semitism in Europe 1870 to 1914 5. The Structure of Wilhelmine Germany 6. Bismarck and the Alliance System 7. Weltpolitik 8. Colonial Rivalries 9. First and Second Moroccan Crises 10. The First World War triggers 11. The Causes of the First World War 12. Germany and the First World War 13. Military history of the First World War 14. The Treaty of Versailles 15. The Domestic Impact of the First World War 16. The German Revolution 17. The Weimar Republic 18. The Early Years of the Nazi Party 19. The Rise of the Nazi Party 20. The Establishment of the Nazi Dictatorship 21. Nazi Rule in Germany 1934 to 1939 22. The Economics of the Third Reich 23. Appeasement RUSSIA & EUROPE 1855—1953 1. Alexander II and the Great Reforms 2. Imperial Russia under Alexander III 3. Nicholas II and the 1905 revolution 4. Social and economic developments in Russia 5. Russia: the Great war and collapse of Tsarism 6. Provisonal Government & October Revolution 7. The Era of Lenin 8. The Development of Lenin's Thought 9. New Economic Policy and the Rise of Stalin 10. Stalin and the Soviet Union 1924 to 1953 11. Stalin and the Soviet Economy 12. Stalin and International Relations BRITAIN 1914—1936 1. The Great War and Britain 1914—15 2. Britain during the Great War, 1915—16 3. Lloyd George & the Great War, 1916—1918 4. Great Britain after the War, 1918—22 5. British Politics, 1922—25 6. Class Conflict & the National Strike, 1926 7. Britain & International Relations, 1925—29 8. Social Trends in Britain during the 1920s 9. Social Issues during the late 1920s 10. British Politics 1926—29; Election of 1929 11. Britain — the crisis of 1929 12. The Labour Government of 1929—31 13. Britain and economic affairs, 1931—33 14. Britain and Foreign Affairs, 1931—36 15. Social Conditions in Britain during the 1930s Advanced level Mathematics ALGEBRA & GEOMETRY 1. Simultaneous Equations 2. Polynomial Algebra 3. Cartesian Coordinates 4. The equation of the straight line 5. Intersection of lines and curves 6. Remainder and Factor Theorems 7. Functions 8. Quadratic Inequalities 9. Graphs of Inequalities 10. Indices 11. Polynomial Division 12. Velocity-Time Graphs 13. Tally Charts 14. Absolute and relative errors 15. Sequences and Series 16. Arithmetic Progressions 17. Proof by Contradiction 18. Geometric Progressions 19. The Cartesian Equation of the Circle 20. Transformations of graphs 21. Plane Trigonometry 22. Modulus 23. Trigonometric Functions 24. Inverse Trigonometric Functions 25. Linear Inequalities 26. Proportionality 27. Probability 28. Surds 29. Special Triangles 30. Quadratic Polynomials 31. Roots & Coefficients of Quadratics 32. Radian measure 33. Permutations and Combinations 34. Set Theory and Venn Diagrams 35. Sine and cosine rules 36. Elementary Trigonometric Identities 37. Roots and curve sketching 38. Graphs and roots of equations 39. Picards Method 40. Small Angle Approximations 41. Simultaneous equations in three unknowns 42. Linear relations and experimental laws 43. Conditional Probability 44. Pascal's Triangle and the Binomial Theorem 45. Index Equations and Logarithms 46. The Binomial Theorem for Rational Indices 47. Exponential Growth and Decay 48. Exponential and Natural Logarithm 49. Compound Angle Formulas 50. Sinusoidal functions 51. Vector Algebra 52. The Vector Equation of the Straight Line 53. The Scalar Product of Vectors 54. Axiom Systems 55. Introduction to Complex Numbers 56. The algebra of complex numbers 57. Complex Numbers and the Argand plane 58. De Moivres Theorem 59. Eulers formula 60. Further loci of complex numbers 61. Further graph sketching 62. Mathematical Induction 63. Proof of the Binomial Theorem 64. Polar Coordinates 65. Conic sections 66. Partial Fractions 67. First-order linear recurrence relations 68. Summation finite series with standard results 69. Method of differences 70. Trigonometric Equations 72. Series Expansion 73. Lagrange Interpolating Polynomial 74. Error in an interpolating polynomial 75. Abelian groups 76. Geometrical uses of complex numbers 77. Cyclic Groups 78. The Cayley-Hamilton Theorem 2x2 Matrices 79. Cayley Theorem 80. Determinants 81. Isomorphisms 82. Lagrange theorem 83. Properties of groups 84. Group structure 85. Subgroups 86. Homomorphisms 87. Matrix Algebra 88. Determinant and Inverse of a 2x2 matrix 89. Gaussian elimination 90. Matrix representation of Fibonacci numbers 91. Matrix groups 92. Inverse of a 3 x 3 Matrix 93. Singular and non-singular matrices 94. Properties of Matrix Multiplication 95. Induction in Matrix Algebra 96. Properties of Determinants 97. Permutation groups 98. First Isomorphism Theorem for Groups 99. Roots of Polynomials of Degree 3 100. Scalar Triple Product 101. Systems of Linear Equations 102. Matrix Transformations 103. Mappings of complex numbers 104. Cross product of two vectors 105. Vector planes 106. Eigenvalues and Eigenvectors CALCULUS 1. Introduction to the Differential Calculus 2. Stationary points and curve sketching 3. Applications of Differentiation 4. Differentiation from First Principles 5. The Trapezium Method 6. Integration 7. Direct Integration 8. Applications of integration to find areas 9. Graphs of Rational Functions 10. Derivatives of sine and cosine 11. Products, Chains and Quotients 12. Volumes of Revolution 13. Exponential and Logarithmic Functions 14. Integration by Parts 15. Parametric Equations 16. The Integral of 1/x 17. Integration by Substitution 18. Implicit Differentiation 19. Formation of a differential equation 20. Separation of variables 21. Integrals of squares of trig functions 22. Maclaurin Series 23. Techniques of Integration 24. Integrating Factor 25. The Newton-Raphson formula 26. Errors in Numerical Processes 27. Roots and Recurrence Relations 28. Derivatives of Inverse Trig. Functions 29. Second order homogeneous equations 30. Second order inhomogeneous equations 31. Implicit differentiation — second derivative 32. Integrands to inverse trigonometric functions 33. Integrands to logarithmic function 34. Integration of Partial Fractions 35. Logarithms and Implicit Differentiation 36. Implicit differentiation and MaClaurin series 37. Separation of variables by substitution 38. Trigonometric Substitutions for Integrals 39. Truncation Errors 40. Euler and Trapezoidal Method 41. Numerical methods for differential equations 42. Simpson Method 43. Proof of Simpson Formula 44. Richardson Extrapolation 45. Arc length of a curve in Cartesian coordinates 46. Arc length of a curve in Polar coordinates 47. Arc length of a curve: Parametric form 48. Curves in Euclidean space 49. Functions and continuity 50. The gradient of a scalar field 51. The derivatives of the hyperbolic functions 52. Hyperbolic Functions 53. Inverse Hyperbolic Functions 54. Hyperbolic Identities 55. Integrals with inverse hyperbolic functions 56. Reduction formulae 57. Simultaneous differential equations 58. Surface of Revolution 59. Vector differential calculus 60. Scalar Fields and Vector Functions STATISTICS & PROBABILITY 1. Central Tendency: Mean, Median and Mode 2. Standard Deviation 3. Cumulative Frequency 4. Discrete Random Variables 5. Mutually exclusive and independent events 6. The Binomial Distribution 7. The Normal Distribution 8. Standardised Normal Distribution 9. Regression Lines 10. Correlation 11. The Geometric Distribution 12. Hypothesis Testing — Binomial Distribution 13. Index Numbers 14. Time Series Analysis 15. Bayes Theorem 16. Confidence interval mean — known variance 17. The Central Limit Theorem 18. Pearsons product moment correlation 19. Spearmans Rank Correlation Coefficient 20. Hypothesis Testing — Normal Distribution 21. The Poisson Distribution 22. The Normal Approximation to the Binomial 23. The Normal Approximation to the Poisson 24. The Poisson Approximation to the Binomial 25. Type I and type II errors 26. Scalar multiples of a Poisson variable 27. Test for the Mean of a Poisson distribution 28. Random Number Sampling 29. Estimating Population Parameters 30. Random Samples and Sampling Techniques 31. The Concept of a Statistic 32. Hypothesis test for the population variance 33. Central Concepts in Statistics 34. Continuous Probability Distributions 35. Modeling: Chi squared goodness of fit 36. Chi squared test for independence 37. Degrees of Freedom 38. Difference Sample Means Unknown Variance 39. Moment generating functions 40. Probability generating functions 41. Linear Combinations of Random Variables 42. Maximum Likelihood Estimators 43. Wilcoxon signed rank test on median 44. Non-parametric significance tests 45. Single-sample sign test of population median 46. Paired-sample sign test on medians 47. Paired sample t-test for related data 48. Paired sample Wilcoxon signed rank test 49. Difference of two sample means 50. Pooled sample estimate 51. Testing the Sample Mean 52. The Uniform Distribution MECHANICS 1. Velocity-Time and Displacement-Time Graphs 2. Force diagrams 3. Representation of Forces by Vectors 4. Static Equilibrium 5. Equilibrium of coplanar forces 6. Weight and Free Fall 7. Normal Reaction and Friction 8. Newtons First and Second Laws 9. Relative Motion 10. Projectiles 11. Calculus and Kinematics 12. Motion of a Particle: Vector calculus form 13. Work 14. Energy Conversions 15. Gravitational potential and kinetic energy 16. Connected Particles 17. Moments 18. Linear momentum 19. Power 20. Hookes Law 21. Simple Harmonic Motion 22. Simple Harmonic Motion and Springs 23. Calculus, Kinematics in Three Dimensions 24. Sliding, toppling and suspending 25. Impulsive Tensions in Strings 26. Angular Velocity 27. Motion in a Horizontal Circle 28. Centre of Mass of a Uniform Lamina 29. Motion in a Vertical Circle 30. Motion under a Variable Force 31. Conservation of Angular Momentum 32. Centre of Mass of a Composite Body 33. Motion under a central force 34. Centre of Mass of a Uniform Lamina 35. Centre of Mass Uniform Solid of Revolution 36. Equilibrium of Rigid Bodies in Contact 37. Damped Harmonic Motion 38. Moment of Inertia 39. Impulse, elastic collisions in one dimension 40. Parallel and Perpendicular Axis Theorems 41. Motion described in polar coordinates 42. Simple pendulum 43. Compound pendulum 44. Stability and Oscillations 45. Vector calculus 46. Linear Motion of a Body of Variable Mass DISCRETE & DECISION 1. Algorithms 2. Introduction to graph theory 3. Dijkstra algorithm 4. Sorting Algorithms 5. Critical Path Analysis 6. Dynamic Programming 7. Decision Trees 8. The Maximal Flow Problem 9. The Hungarian algorithm 10. Introduction to Linear Programming 11. Simplex Method 12. Matching Problems 13. Game Theory 14. Minimum connector problem 15. Recurrence relations 16. Proofs for linear recurrence relations 17. Simulation by Monte Carlo Methods 18. Travelling and Optimal Salesperson Problems 19. The Travelling Salesperson Problem Philosophy INTRODUCTION TO PHILOSOPHY 1. The problem of evil 2. Introduction to Plato 3. Knowledge, belief and justification 4. Descartes Meditation I 5. Introduction to the problem of universals 6. Introduction to metaethics 7. Subjectivism versus objectivism 8. Aristotle's function argument 9. Natural Law Theory 10. Utilitarianism 11. The Nicomachaen Ethics of Aristotle 12. Virtue Ethics 13. Descartes Meditation II 14. Hume and empiricism 15. The paradox of induction 16. Hume's attack on Descartes 17. The Cosmological Argument 18. The Ontological Argument 19. The Teleological Argument 20. The Argument from religious experience 21. The Moral Argument 22. The argument from illusion 23. Materialism 24. Human Identity Sociology PERSPECTIVES & METHODOLOGY 1. Introduction to Marxism 2. Introduction to Durkheim 3. Weber: classes, status groups and parties 4. Introduction to patriarchy and gender roles 5. Mass culture theory 6. The Frankfurt school STRATIFICATION & DIVERSITY 1. Ethnic groups and discrimination 2. Race, Ethnicity and Nationalism 3. Social Inequality 4. Theories of Racism 5. Class structure 6. Modern Functionalism and Stratification 7. Social Mobility 8. Bottomore: Classes in Modern Britain 9. American exceptionalism ASPECTS OF SOCIETY 1. Definitions of Poverty 2. Theories of Poverty 3. Solutions to Poverty 4. Alienation 5. Leisure 6. Work and Technological Change 7. Conflict and Cooperation at Work 8. Attitudes to Work 9. Unemployment 10. Perspectives on Education 11. Education and Ethnicity 12. Education and Gender 13. The Family and Social Structure 14. The Family and Household Structure 15. Conjugal Roles 16. Marital Breakdown 17. Post War Education in Britain 18. British Social Policy 1945—1990