• Professional Development
  • Medicine & Nursing
  • Arts & Crafts
  • Health & Wellbeing
  • Personal Development

252 Generator courses

Keras Deep Learning and Generative Adversarial Networks (GAN)

By Packt

Welcome to this dual-phase course. In the first segment, we delve into neural networks and deep learning. In the second, ascend to mastering Generative Adversarial Networks (GANs). No programming experience required. Begin with the fundamentals and progress to an advanced level.

Keras Deep Learning and Generative Adversarial Networks (GAN)
Delivered Online On Demand17 hours 16 minutes
£93.99

Certified TIA-942 Design Consultant (CTDC)

By Nexus Human

Duration 3 Days 18 CPD hours This course is intended for Participants must possess a valid data centre training certificate such as CDCP or any other approved equivalent. Please submit a copy of your certificate for verification upon registration for the CTDC course. Overview After completion of the course the participant will be able to:1. Learn to properly comprehend and apply the ANSI/TIA-942 Standard requirements and guidelines2. Understand the proper intent of the ANSI/TIA-942 Standard to avoid both over- and/or under-investment3. Align the selection of redundancy levels and infrastructure investments to the business requirements.4. Understand the criteria and requirements for a high-availability data centre design and how to effectively establish the data centre from the perspective of the ANSI/TIA-942 Standard5. Understand how the ANSI/TIA-942 Standard relates to various worldwide standards This course, the participant will learn how to design an ANSI/TIA-942 compliant data centre. It will provide a clear understanding of the requirements of the ANSI/TIA-942 Standard and possible implementation variations. Introduction to Data Centre Facilities About the ANSI/TIA-942 Life of the ANSI/TIA-942 Standard Relation to other standards Architectural Electrical Mechanical Telecommunication Areas under scope High level redundancy definitions Redundancy options (N, N+1 etc.) Fault tolerant Concurrent maintainability Compartmentalisation Examples of redundancy levels Data Centre Space PlanningData Centre TopologiesRecommendations for Energy EfficiencyArchitectural Site selection Parking Multi-tenant building Building construction Vapor barrier Roofing Floor loading Raised flooring Suspended/drop ceiling Hanging load Seismic Building Security & Safety Security CCTV Staffing Bullet/ballistic proofing Lighting Safety - Signage Building and Room Access Security checkpoints Entry lobby Doors and windows Exit corridors Shipping and receiving areas Room/Area Design Requirements Administrative offices Security offce Operations centre Restroom and break room UPS/Battery rooms Generator and fuel storage area Computer room Electrical Utility power - Substation - Feed requirements - Self-generation HT/HV switch gear Generator and fuel supply LT/LV switch gear - ATS - Alternatives to ATS UPS and batteries PDU STS Grounding Surge protection EPO Central power monitoring Load banks Testing Equipment maintenance - Preventive maintenance - Facility training programs Mechanical Environmental design - Temperature and humidity requirements - Contamination - Sources - Clean air - Pressurisation - Radio sources - Vibration - Water ingress Water cooled systems - Heat rejection - Chilled water system - Condenser water? - Make up water Air cooled systems HVAC control systems Plumbing - Pipe routing Fire suppression Water leak detection Telecommunications Network topology Redundancy level design Media and connectors Cabling pathways Detailed cabling design considerations Administration and labeling Cable testing Data centre fabrics Exam: Certified TIA-942 Design Consultant Actual course outline may vary depending on offering center. Contact your sales representative for more information.

Certified TIA-942 Design Consultant (CTDC)
Delivered OnlineFlexible Dates
£2,400

PV304: Solar Training - Advanced PV Stand-alone System Design (Battery-Based)

By Solar Energy International (SEI)

Stand-alone system configurations Charge controller and array considerations RV system design example DC lighting system design example Clinic system design example Code compliance and best practices for stand-alone systems Advanced battery-based inverters Generator sizing DC coupled stand-alone residential system design example AC coupled stand-alone microgrid system design example Large-scale microgrid considerations and case studies Flooded battery maintenance considerations Stand-alone PV system commissioning and maintenance Note: SEI recommends working closely with a qualified person and/or taking PV 202 for more information on conductor sizing, electrical panel specification, and grounding systems. These topics will part of this course, but they are not the focus.

PV304: Solar Training - Advanced PV Stand-alone System Design (Battery-Based)
Delivered Online On Demand
£759.54

Rotating Machines

4.9(27)

By Apex Learning

Overview This comprehensive course on Rotating Machines will deepen your understanding on this topic. After successful completion of this course you can acquire the required skills in this sector. This Rotating Machines comes with accredited certification from CPD, which will enhance your CV and make you worthy in the job market. So enrol in this course today to fast track your career ladder. How will I get my certificate? You may have to take a quiz or a written test online during or after the course. After successfully completing the course, you will be eligible for the certificate. Who is This course for? There is no experience or previous qualifications required for enrolment on this Rotating Machines. It is available to all students, of all academic backgrounds. Requirements Our Rotating Machines is fully compatible with PC's, Mac's, Laptop, Tablet and Smartphone devices. This course has been designed to be fully compatible with tablets and smartphones so you can access your course on Wi-Fi, 3G or 4G. There is no time limit for completing this course, it can be studied in your own time at your own pace. Career Path Having these various qualifications will increase the value in your CV and open you up to multiple sectors such as Business & Management, Admin, Accountancy & Finance, Secretarial & PA, Teaching & Mentoring etc. Course Curriculum 2 sections • 9 lectures • 07:30:00 total length •Module 01: Introduction to Rotation Machines: 00:06:00 •Module 02: Review of Machinery Principles: 00:43:00 •Module 03: DC Machines: 01:11:00 •Module 04: AC Machinery Fundamentals: 01:49:00 •Module 05: 3 Phase Induction Motor: 01:07:00 •Module 06: Synchronous Generator/Motors Part 1: 01:14:00 •Module 07: Synchronous Generator/Motors Part 2: 00:48:00 •Module 08: Synchronous Generator/Motors Prob-Sol.keyc: 00:32:00 •Assignment - Rotating Machines: 00:00:00

Rotating Machines
Delivered Online On Demand7 hours 30 minutes
£12

Electrical Engineering Course

5.0(1)

By LearnDrive UK

Unlock the complexities of rotating machines in electrical engineering with our comprehensive course. Master the principles and applications of DC machines, AC machinery, and synchronous generators/motors.

Electrical Engineering Course
Delivered Online On Demand1 hour
£5

Electrical Machines for Electrical Engineering

By NextGen Learning

In today's fast-paced and competitive world, staying ahead requires constant growth and upskilling. Welcome to Electrical Machines for Electrical Engineering, an empowering journey designed to equip you with the essential knowledge and skills in Electrical Machines for Electrical Engineering to thrive in your professional endeavours. This comprehensive Electrical Machines for Electrical Engineeringcourse combines theoretical concepts with essential applications, providing you with a well-rounded understanding of the topic. Whether you're a seasoned professional seeking to enhance your expertise or a newcomer eager to embark on a new career path, this courseoffers the tools and insights necessary to unlock your true potential. This Electrical Machines for Electrical Engineering course holds a prestigious CPD accreditation, symbolising exceptional quality. The materials, brimming with knowledge, are regularly updated, ensuring their relevance. This Teaching Assistant course promises not just education, but an evolving learning experience. Engage with this extraordinary collection, and prepare to enrich your personal and professional development. Enrol in Electrical Machines for Electrical Engineering today and embark on a transformative journey that will set you up for success in the dynamic and evolving world of Electrical Machines for Electrical Engineering. Unleash your potential and take the first step towards a rewarding and fulfilling career! Learning Outcomes By the end of this Electrical Machines for Electrical Engineering course, you will: Gain a deep understanding of the fundamental principles and theories in Electrical Machines for Electrical Engineering. Acquire the ability to analyse and solve complex problems related to the topic critically. Enhance your communication and teamwork skills, which are essential for collaborating effectively in professional settings. Apply the learned concepts in Electrical Machines for Electrical Engineeringto drive innovation and make strategic decisions within your field. Curriculum of Electrical Machines for Electrical Engineering: Unit 1: Introduction to Electric Machines Module 1- Introduction to Electric Machines Module 2- Types of Electric Machines and Principle of Electrical Generation Unit 2: DC Machines Module 1- Importance and Construction of DC Machines Module 2- Armature Winding and EMF Equation Module 3-Solved Example 1 Module 4-Solved Example 2 Module 5-Solved Example 3 Module 6-Solved Example 4 Module 7-Separately Excited DC Machine Module 8-Shunt and Series DC Machines Module 9-Solved Example 1 on Separately Excited DC Machine Module 10-Solved Example 2 on Separately Excited DC Machine Module 11-Solved Example 3 on Shunt Generator Module 12-Solved Example 4 on Shunt Generator Module 13-Solved Example 5 on Series DC Generator Module 14-Types and Applications of Compound DC Motors Module 15- Torque-Speed Characteristics and Speed Control of Separately Excited DC Motor Module 16- Torque-Speed Characteristics of Series DC Motor Module 17-Solved Example 1 on Speed Control Module 18-Solved Example 2 on Speed Control Module 19- Starting of DC Machine Module 20- Armature Reaction in DC Machines Module 21-Losses in DC Machines Unit 3: Construction of Transformers Module 1- What is a Transformer Module 2- Importance of Transformer Module 3-Iron Core of Transformer Module 4- Magnetic Circuit Inside Transformer Module 5- Windings of Transformer Module 6- Why are Windings Made of Copper Module 7- Classification of Windings Module 8- Insulating Material and Transformer Oil Module 9- Conservator of Transformer Module 10- Breather of Transformer Module 11- Bushings of Transformer Module 12- Tap Changer of Transformer Module 13- Cooling Tubes of Transformer Module 14- Buchholz Relay of Transformer Module 15- Explosion Vent Module 16- Methods of Cooling Module 17-Types of Transformers Module 18- Power Transformer and Distribution Transformer Module 19- Single Phase Core Type Transformer Module 20-Single Phase Shell Type Transformer Module 21- 3 Phase Core Type Module 22- 3 Phase Shell Type Module 23- Comparison between Shell and Core CSA Module 24- Comparison between Shell and Core Type Module 25- Notes Module 26-Video Explaining The Components in 3D and Real Life Unit 4: Fundamentals of Magnetic Circuits Module 1- Introduction to Magnetic Circuits Module 2- Induced Emf and Current Module 3- Ampere Right Hand Rule Module 4- Magnetic Circuit and Important Definitions Module 5- Linear and Non Linear Materials Module 6-Flux Linkage and Reluctance Module 7- Analogy between Electric and Magnetic Circuits Module 8- Fringing Effect Module 9- Example 1 Magnetic Circuits Module 10- Example 2 Module 11- Example 3 Module 12- Application on Magnetic Circuit - Transformers Unit 5: Theoretical Part on Transformers Module 1- Introduction to Transformers Module 2- Construction of Transformer Module 3-Theory of Operation Module 4- Ideal Transformer Module 5-Non Ideal Transformer Module 6- Effect of Loading on Transformer Module 7- Transformer Regulation Module 8- Transformer Losses Module 9- Transformer Efficiency Module 10- Transformer Rating Module 11- Question 1 Module 12- Question 2 Module 13- Question 3 Module 14- Example 1 Module 15- Voltage Relation of Transformer Module 16- Transformer Exact Equivalent Circuit Module 17- Concept of Refereeing Module 18- Approximate Equivalent Circuit Unit 6: Synchronous Machines Module 1- Construction and Principle of Operation of Synchronous Generator Module 2- Principle of Operation of Synchronous Motor Module 3- Equivalent Circuit and Phasor Diagram of Non Salient Synchronous Machine Module 4-Solved Example 1 on Non Salient Machine Module 5-Solved Example 2 on Non Salient Machine Module 6-Solved Example 3 on Non Salient Machine Module 7- Solved Example 4 on Non Salient Machine Module 8-Solved Example 5 on Non Salient Machine Module 9-Solved Example 6 on Non Salient Machine Module 10- Equivalent Circuit and Phasor Diagram of Salient Synchronous Machine Module 11-Solved Example 1 on Salient Machine Module 12- Solved Example 2 on Salient Machine Module 13-Solved Example 3 on Salient Machine Module 14- Parallel Operation of Two Generators Module 15- Synchronization of Machine with Grid Unit 7: Induction Machines Module 1- Construction and Theory of Operation of Induction Machines Module 2- Equivalent Circuit and Power Flow in Induction Motor Module 3- Torque-Speed Characteristics of Induction Motor Module 4- Solved Example 1 on Induction Motor Module 5-Solved Example 2 on Induction Motor Module 6-Solved Example 3 on Induction Motor Module 7-Solved Example 4 on Induction Motor Module 8-Solved Example 5 on Induction Motor Module 9- Methods of Speed Control of Induction Motor Module 10- Methods of Starting of Induction Motor Module 11-Solved Example on Motor Starter Module 12- Principle of Operation of Doubly Fed Induction Generator Module 13-Self Excited Induction Generator This Electrical Machines for Electrical Engineering course holds a prestigious CPD accreditation, symbolising exceptional quality. The materials, brimming with knowledge, are regularly updated, ensuring their relevance. This Teaching Assistant course promises not just education but an evolving learning experience. Engage with this extraordinary collection, and prepare to enrich your personal and professional development. CPD 15 CPD hours / points Accredited by CPD Quality Standards Who is this course for? Professionals looking to expand their knowledge and skills in Electrical Machines for Electrical Engineering. Recent graduates seeking to enter the job market with a competitive edge. Individuals considering a career change into Electrical Machines for Electrical Engineering. Entrepreneurs aiming to gain insights into Electrical Machines for Electrical Engineering to boost their business strategies. Anyone interested in broadening their understanding of Electrical Machines for Electrical Engineering for personal or professional growth. Requirements No prior knowledge or experience is required to enrol in this Electrical Machines for Electrical Engineering course. Career path Completing Electrical Machines for Electrical Engineering can give you the initial boost to a world of exciting career opportunities.

Electrical Machines for Electrical Engineering
Delivered Online On Demand14 hours
£12

GW100 SAP Gateway - Building OData Services

By Nexus Human

Duration 5 Days 30 CPD hours This course is intended for DevelopersConsultants Overview Explore SAP Gateway architecture and deployment optionsPerform OData queries and operations with SAP GatewayDefine data model and implement CRUD operationsExtend SAP Gateway services and build new ones with CDS ViewsConfigure routing, multiple origin, and SAP Workflow supportImplement advanced OData operations and introduce OData V4Handle security and consume OData services using SAP Web IDE Students will explore SAP Gateway architecture and deployment options. SAP Gateway Overview SAP Gateway Architecture SAP Gateway Deployment Options OData Overview OData and REST OData Operations OData Queries Consuming OData using SAP Web IDE SAP Gateway Service Implementation Defining a Data Model Implementing Read Operations Implementing Navigation Implementing Query Options Implementing Change Operations SAP Gateway Service Generation RFC/BOR Generator Search Help Generator SAP Gateway Service Redefinition Redefining a Data Service Redefining a Gateway Service SAP Gateway and CDS Views SAP Fiori Programming Model CDS/SADL Generator Data Source Reference CDS View Annotations SAP Gateway Hub Functionalities Multiple Back-End Systems Support Configuring Routing Capabilities Multiple Origin Composition SAP Workflow Support Advanced OData Options Implementing Function Imports Implementing Expand Operations Implementing Deep Insert Operations Handling ETags Batch Requests Media Links Offline Support Server Side Caching SAP Gateway Security Authentication Data Security SAP Gateway OData V4 Support OData V4 Implementation OData V4 Publishing

GW100 SAP Gateway - Building OData Services
Delivered OnlineFlexible Dates
Price on Enquiry

Parsing Algorithms

By Packt

Building a parser is one of the early steps of designing a compiler. And to build a parser, it is important to learn about the different parsing techniques and how they work. In this course, we are going to learn just that.

Parsing Algorithms
Delivered Online On Demand4 hours 11 minutes
£37.99

The Complete Self-Driving Car Course - Applied Deep Learning

By Packt

Use deep learning, Computer Vision, and machine learning techniques to build an autonomous car with Python

The Complete Self-Driving Car Course - Applied Deep Learning
Delivered Online On Demand18 hours
£29.99

Electrical Machines for Electrical Engineering

4.9(27)

By Apex Learning

Overview This comprehensive course on Electrical Machines for Electrical Engineering will deepen your understanding on this topic. After successful completion of this course you can acquire the required skills in this sector. This Electrical Machines for Electrical Engineering comes with accredited certification from CPD, which will enhance your CV and make you worthy in the job market. So enrol in this course today to fast track your career ladder. How will I get my certificate? You may have to take a quiz or a written test online during or after the course. After successfully completing the course, you will be eligible for the certificate. Who is This course for? There is no experience or previous qualifications required for enrolment on this Electrical Machines for Electrical Engineering. It is available to all students, of all academic backgrounds. Requirements Our Electrical Machines for Electrical Engineering is fully compatible with PC's, Mac's, Laptop, Tablet and Smartphone devices. This course has been designed to be fully compatible with tablets and smartphones so you can access your course on Wi-Fi, 3G or 4G. There is no time limit for completing this course, it can be studied in your own time at your own pace. Career Path Having these various qualifications will increase the value in your CV and open you up to multiple sectors such as Business & Management, Admin, Accountancy & Finance, Secretarial & PA, Teaching & Mentoring etc. Course Curriculum 8 sections • 108 lectures • 14:20:00 total length •Module 1- Introduction to Electric Machines: 00:03:00 •Module 2- Types of Electric Machines and Principle of Electrical Generation: 00:09:00 •Module 1- Importance and Construction of DC Machines: 00:26:00 •Module 2- Armature Winding and EMF Equation: 00:40:00 •Module 3-Solved Example 1: 00:05:00 •Module 4-Solved Example 2: 00:04:00 •Module 5-Solved Example 3: 00:07:00 •Module 6-Solved Example 4: 00:06:00 •Module 7-Separately Excited DC Machine: 00:21:00 •Module 8-Shunt and Series DC Machines: 00:25:00 •Module 9-Solved Example 1 on Separately Excited DC Machine: 00:07:00 •Module 10-Solved Example 2 on Separately Excited DC Machine: 00:07:00 •Module 11-Solved Example 3 on Shunt Generator: 00:04:00 •Module 12-Solved Example 4 on Shunt Generator: 00:07:00 •Module 13-Solved Example 5 on Series DC Generator: 00:06:00 •Module 14-Types and Applications of Compound DC Motors: 00:07:00 •Module 15- Torque-Speed Characteristics and Speed Control of Separately Excited DC Motor: 00:33:00 •Module 16- Torque-Speed Characteristics of Series DC Motor: 00:08:00 •Module 17-Solved Example 1 on Speed Control: 00:08:00 •Module 18-Solved Example 2 on Speed Control: 00:06:00 •Module 19- Starting of DC Machine: 00:14:00 •Module 20- Armature Reaction in DC Machines: 00:10:00 •Module 21-Losses in DC Machines: 00:04:00 •Module 1- What is a Transformer: 00:02:00 •Module 2- Importance of Transformer: 00:04:00 •Module 3-Iron Core of Transformer: 00:04:00 •Module 4- Magnetic Circuit Inside Transformer: 00:05:00 •Module 5- Windings of Transformer: 00:03:00 •Module 6- Why are Windings Made of Copper: 00:01:00 •Module 7- Classification of Windings: 00:05:00 •Module 8- Insulating Material and Transformer Oil: 00:02:00 •Module 9- Conservator of Transformer: 00:03:00 •Module 10- Breather of Transformer: 00:04:00 •Module 11- Bushings of Transformer: 00:04:00 •Module 12- Tap Changer of Transformer: 00:03:00 •Module 13- Cooling Tubes of Transformer: 00:01:00 •Module 14- Buchholz Relay of Transformer: 00:02:00 •Module 15- Explosion Vent: 00:02:00 •Module 16- Methods of Cooling: 00:03:00 •Module 17-Types of Transformers: 00:03:00 •Module 18- Power Transformer and Distribution Transformer: 00:05:00 •Module 19- Single Phase Core Type Transformer: 00:04:00 •Module 20-Single Phase Shell Type Transformer: 00:05:00 •Module 21- 3 Phase Core Type: 00:02:00 •Module 22- 3 Phase Shell Type: 00:01:00 •Module 23- Comparison between Shell and Core CSA: 00:01:00 •Module 24- Comparison between Shell and Core Type: 00:01:00 •Module 25- Notes: 00:03:00 •Module 26-Video Explaining The Components in 3D and Real Life: 00:05:00 •Module 1- Introduction to Magnetic Circuits: 00:02:00 •Module 2- Induced Emf and Current: 00:04:00 •Module 3- Ampere Right Hand Rule: 00:04:00 •Module 4- Magnetic Circuit and Important Definitions: 00:06:00 •Module 5- Linear and Non Linear Materials: 00:03:00 •Module 6-Flux Linkage and Reluctance: 00:04:00 •Module 7- Analogy between Electric and Magnetic Circuits: 00:06:00 •Module 8- Fringing Effect: 00:02:00 •Module 9- Example 1 Magnetic Circuits: 00:07:00 •Module 10- Example 2: 00:03:00 •Module 11- Example 3: 00:06:00 •Module 12- Application on Magnetic Circuit - Transformers: 00:04:00 •Module 1- Introduction to Transformers: 00:02:00 •Module 2- Construction of Transformer: 00:02:00 •Module 3-Theory of Operation: 00:04:00 •Module 4- Ideal Transformer: 00:05:00 •Module 5-Non Ideal Transformer: 00:02:00 •Module 6- Effect of Loading on Transformer: 00:03:00 •Module 7- Transformer Regulation: 00:03:00 •Module 8- Transformer Losses: 00:03:00 •Module 9- Transformer Efficiency: 00:05:00 •Module 10- Transformer Rating: 00:02:00 •Module 11- Question 1: 00:01:00 •Module 12- Question 2: 00:02:00 •Module 13- Question 3: 00:01:00 •Module 14- Example 1: 00:01:00 •Module 15- Voltage Relation of Transformer: 00:04:00 •Module 16- Transformer Exact Equivalent Circuit: 00:06:00 •Module 17- Concept of Refereeing: 00:04:00 •Module 18- Approximate Equivalent Circuit: 00:02:00 •Module 1- Construction and Principle of Operation of Synchronous Generator: 00:29:00 •Module 2- Principle of Operation of Synchronous Motor: 00:24:00 •Module 3- Equivalent Circuit and Phasor Diagram of Non Salient Synchronous Machine: 00:29:00 •Module 4-Solved Example 1 on Non Salient Machine: 00:05:00 •Module 5-Solved Example 2 on Non Salient Machine: 00:11:00 •Module 6-Solved Example 3 on Non Salient Machine: 00:07:00 •Module 7- Solved Example 4 on Non Salient Machine: 00:04:00 •Module 8-Solved Example 5 on Non Salient Machine: 00:07:00 •Module 9-Solved Example 6 on Non Salient Machine: 00:03:00 •Module 10- Equivalent Circuit and Phasor Diagram of Salient Synchronous Machine: 00:39:00 •Module 11-Solved Example 1 on Salient Machine: 00:09:00 •Module 12- Solved Example 2 on Salient Machine: 00:05:00 •Module 13-Solved Example 3 on Salient Machine: 00:10:00 •Module 14- Parallel Operation of Two Generators: 00:17:00 •Module 15- Synchronization of Machine with Grid: 00:10:00 •Module 1- Construction and Theory of Operation of Induction Machines: 00:27:00 •Module 2- Equivalent Circuit and Power Flow in Induction Motor: 00:23:00 •Module 3- Torque-Speed Characteristics of Induction Motor: 00:20:00 •Module 4- Solved Example 1 on Induction Motor: 00:08:00 •Module 5-Solved Example 2 on Induction Motor: 00:06:00 •Module 6-Solved Example 3 on Induction Motor: 00:06:00 •Module 7-Solved Example 4 on Induction Motor: 00:18:00 •Module 8-Solved Example 5 on Induction Motor: 00:13:00 •Module 9- Methods of Speed Control of Induction Motor: 00:27:00 •Module 10- Methods of Starting of Induction Motor: 00:21:00 •Module 11-Solved Example on Motor Starter: 00:15:00 •Module 12- Principle of Operation of Doubly Fed Induction Generator: 00:11:00 •Module 13-Self Excited Induction Generator: 00:08:00 •Assignment - Electrical Machines for Electrical Engineering: 00:00:00

Electrical Machines for Electrical Engineering
Delivered Online On Demand14 hours 20 minutes
£12