Embark on a transformative journey through the realm of strategic product development with our 'How to Develop a Solid Product Strategy' course. Envision your roadmap to success as you delve into the intricate tapestry of defining and delivering a product that not only meets market needs but exceeds expectations. Our first chapter unfurls the essence of product strategy, setting a solid foundation for the insightful odyssey ahead. As the narrative progresses, learners are equipped to articulate the 'what', 'where', 'when', and 'how' of their offerings, ensuring that their vision aligns seamlessly with their venture's core objectives. The second chapter of this educational narrative unfolds as a guide to crystallising your product concept and birthing a Minimum Viable Product (MVP) that resonates with your target audience. You are then adeptly led through the creation of a dynamic product roadmap, vital for navigating the competitive business landscape. As the final act, we reveal strategies to shield your product vision against challenges, enabling you to stand firm in the face of industry turbulence. This course is an odyssey of discovery, strategy, and mastery for the intrepid entrepreneur or product manager seeking to leave an indelible mark in the commercial cosmos. Learning Outcomes Decipher the intricacies of a robust product strategy. Articulate the fundamental aspects of product planning. Craft an MVP to initiate the product journey. Develop a comprehensive product roadmap. Defend and uphold a product strategy amidst market flux. Why choose this How to Develop a Solid Product Strategy course? Unlimited access to the course for a lifetime. Opportunity to earn a certificate accredited by the CPD Quality Standards after completing this course. Structured lesson planning in line with industry standards. Immerse yourself in innovative and captivating course materials and activities. Assessments are designed to evaluate advanced cognitive abilities and skill proficiency. Flexibility to complete the How to Develop a Solid Product Strategy Course at your own pace, on your own schedule. Receive full tutor support throughout the week, from Monday to Friday, to enhance your learning experience. Who is this How to Develop a Solid Product Strategy course for? Visionary entrepreneurs seeking to launch groundbreaking products. Product managers eager to refine strategic planning skills. Innovators ready to translate concepts into market-ready solutions. Business strategists aiming to master product lifecycle management. Start-up enthusiasts wanting to pioneer with effective product blueprints. Career path Product Manager: £35,000 - £70,000 Product Strategist: £40,000 - £78,000 Business Analyst: £30,000 - £65,000 Innovation Manager: £38,000 - £85,000 Product Development Manager: £45,000 - £80,000 Chief Strategy Officer: £60,000 - £120,000 Prerequisites This How to Develop a Solid Product Strategy does not require you to have any prior qualifications or experience. You can just enrol and start learning.This How to Develop a Solid Product Strategy was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Certification After studying the course materials, there will be a written assignment test which you can take at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £4.99 Original Hard Copy certificates need to be ordered at an additional cost of £8. Course Curriculum Introduction Product Strategy Overview 00:04:00 Product Strategy Explained Voss Water Case Study 00:02:00 Product Strategy Building Blocks 00:03:00 What Investors are Looking For 00:03:00 Keys to Success 00:02:00 Define the What, Where, When and How of Your Product Product Vision vs Company Vision 00:02:00 Questions to Ask About Your Product Vision 00:02:00 Ensuring a Winning Product Strategy Common Mistakes 00:05:00 Best Practices 00:02:00 Define Your Product or Service Define Your Product or Service 00:10:00 Create Your MVP Minimum Viable Product Explained 00:03:00 Sample MVPs 00:03:00 Entrepreneurial Personality Types 00:03:00 MVP Guidelines 00:04:00 How to Evaluate Your MVP 00:08:00 Defending Your Strategy 00:08:00 Create Your Product Roadmap Your Product Roadmap 00:06:00 Product Roadmap Formats 00:06:00 Defending Your Strategy Workshop - Create Your Product Strategy 00:04:00 Additional Materials Resource - How to Develop a Solid Product Strategy 00:00:00
In an era marked by hyper-competition and constant flux, mastering the art of Lean Six Sigma offers a compelling edge. With this course, you'll delve into the theoretical intricacies of streamlined operational processes, redefining productivity and quality in your professional landscape. Learn the science of reducing waste and increasing efficiency, making you an indispensable asset in the 21st-century workforce. With a staggering 82% of Fortune 100 companies using Lean Six Sigma, the value of this methodology has never been more apparent. This course invites you to join this elite cadre of efficient problem-solvers, offering an in-depth study of Lean Six Sigma in the theoretical realm. Uncover how to reduce waste, enhance productivity, and elevate quality standards. This course offers a comprehensive bundle, specially designed for your convenience, allowing you to immerse in the theoretical realm of Lean Six Sigma from the comfort of your home. It carefully curates a journey from the foundational knowledge of the White Belt, up to the advanced expertise of the Green Belt. Complemented by a study of operations management and a detailed Six Sigma toolkit, this course paves the way for operational efficiency and quality improvement in any professional setting. So, whether you are looking to scale the corporate ladder, or seeking to launch a start-up with streamlined operations, this course opens the gateway to honing your Lean Six Sigma skills at your own pace and in your own space. The five CPD Accredited courses are: Course 01: Diploma in Lean Process and Six Sigma Course 02: Complete Lean Six Sigma Green Belt Course for Service Industry Course 03: Lean Six Sigma White Belt course Course 04: Operations Management: Process Mapping & Supply Chain Course 05: Process Improvement Course 06: Process Improvement: How to Reduce Waste Course 07: Lean Six Sigma: Toolkit Course 08: Project Management: How to Build a Project Charter Learning Outcomes Understand the principles and methodologies underpinning Lean Six Sigma. Gain insights into the process mapping and supply chain within operations management. Absorb foundational knowledge with the Lean Six Sigma White Belt course. Progress to advanced mastery with the Complete Lean Six Sigma Green Belt course. Familiarise with the Lean Process, and elevate your understanding of Six Sigma. Equip yourself with a comprehensive Lean Six Sigma toolkit, boosting your problem-solving skills. Diploma in Lean Process and Six Sigma: Foundational course covering Lean Process and Six Sigma methodologies. Participants learn to identify and eliminate process inefficiencies, reduce defects, and enhance organisational performance. Lean Six Sigma Green Belt for Service Industry: Tailored for the service sector, focusing on applying Lean Six Sigma to improve service processes. Emphasis on customer satisfaction and operational excellence. Lean Six Sigma White Belt: Introductory course providing a basic understanding of Lean Six Sigma concepts for beginners. Operations Management: Process Mapping & Supply Chain: Explores process mapping and supply chain optimisation in operations management. Participants learn to visualise processes and improve supply chain efficiency. Process Improvement: Covers core principles and strategies for process improvement, including identifying areas for enhancement and measuring impacts. Process Improvement - How to Reduce Waste: Focuses on Lean Six Sigma principles to identify and eliminate waste in processes, contributing to cost savings and improved efficiency. Lean Six Sigma: Toolkit: Equips participants with a toolkit of essential Lean Six Sigma methodologies and tools for practical implementation. Project Management: Building a Project Charter: Guides participants in building a project charter within the Lean Six Sigma framework, ensuring effective initiation and leadership of projects. Embark on your Lean Six Sigma journey, and stay ahead in your professional journey! CPD 50 CPD hours / points Accredited by CPD Quality Standards Who is this course for? This Lean Six Sigma course is suitable for: Aspiring professionals keen to explore operational excellence through Lean Six Sigma. Existing operational managers seeking to enhance their knowledge of Lean Six Sigma. Individuals aiming to embark on a quality control career pathway. Entrepreneurs aiming for streamlined operations in their start-ups. Requirements Without any formal requirements, you can delightfully enrol in this Lean Six Sigma course. Career path This Lean Six Sigma course will help you to pursue different career paths: Lean Six Sigma Consultant - £45K to 65K/year. Operations Manager - £30K to 50K/year. Process Improvement Manager - £35K to 55K/year. Quality Assurance Analyst - £25K to 45K/year. Supply Chain Analyst - £28K to 50K/year. Lean Six Sigma Trainer - £40K to 70K/year. Certificates Certificate Of Completion Digital certificate - Included Certificate Of Completion Hard copy certificate - Included You will get a complimentary Hard Copy Certificate.
In today's fast-paced and competitive world, staying ahead requires constant growth and upskilling. Welcome to Electrical Machines for Electrical Engineering, an empowering journey designed to equip you with the essential knowledge and skills in Electrical Machines for Electrical Engineering to thrive in your professional endeavours. This comprehensive Electrical Machines for Electrical Engineeringcourse combines theoretical concepts with essential applications, providing you with a well-rounded understanding of the topic. Whether you're a seasoned professional seeking to enhance your expertise or a newcomer eager to embark on a new career path, this courseoffers the tools and insights necessary to unlock your true potential. This Electrical Machines for Electrical Engineering course holds a prestigious CPD accreditation, symbolising exceptional quality. The materials, brimming with knowledge, are regularly updated, ensuring their relevance. This Teaching Assistant course promises not just education, but an evolving learning experience. Engage with this extraordinary collection, and prepare to enrich your personal and professional development. Enrol in Electrical Machines for Electrical Engineering today and embark on a transformative journey that will set you up for success in the dynamic and evolving world of Electrical Machines for Electrical Engineering. Unleash your potential and take the first step towards a rewarding and fulfilling career! Learning Outcomes By the end of this Electrical Machines for Electrical Engineering course, you will: Gain a deep understanding of the fundamental principles and theories in Electrical Machines for Electrical Engineering. Acquire the ability to analyse and solve complex problems related to the topic critically. Enhance your communication and teamwork skills, which are essential for collaborating effectively in professional settings. Apply the learned concepts in Electrical Machines for Electrical Engineeringto drive innovation and make strategic decisions within your field. Curriculum of Electrical Machines for Electrical Engineering: Unit 1: Introduction to Electric Machines Module 1- Introduction to Electric Machines Module 2- Types of Electric Machines and Principle of Electrical Generation Unit 2: DC Machines Module 1- Importance and Construction of DC Machines Module 2- Armature Winding and EMF Equation Module 3-Solved Example 1 Module 4-Solved Example 2 Module 5-Solved Example 3 Module 6-Solved Example 4 Module 7-Separately Excited DC Machine Module 8-Shunt and Series DC Machines Module 9-Solved Example 1 on Separately Excited DC Machine Module 10-Solved Example 2 on Separately Excited DC Machine Module 11-Solved Example 3 on Shunt Generator Module 12-Solved Example 4 on Shunt Generator Module 13-Solved Example 5 on Series DC Generator Module 14-Types and Applications of Compound DC Motors Module 15- Torque-Speed Characteristics and Speed Control of Separately Excited DC Motor Module 16- Torque-Speed Characteristics of Series DC Motor Module 17-Solved Example 1 on Speed Control Module 18-Solved Example 2 on Speed Control Module 19- Starting of DC Machine Module 20- Armature Reaction in DC Machines Module 21-Losses in DC Machines Unit 3: Construction of Transformers Module 1- What is a Transformer Module 2- Importance of Transformer Module 3-Iron Core of Transformer Module 4- Magnetic Circuit Inside Transformer Module 5- Windings of Transformer Module 6- Why are Windings Made of Copper Module 7- Classification of Windings Module 8- Insulating Material and Transformer Oil Module 9- Conservator of Transformer Module 10- Breather of Transformer Module 11- Bushings of Transformer Module 12- Tap Changer of Transformer Module 13- Cooling Tubes of Transformer Module 14- Buchholz Relay of Transformer Module 15- Explosion Vent Module 16- Methods of Cooling Module 17-Types of Transformers Module 18- Power Transformer and Distribution Transformer Module 19- Single Phase Core Type Transformer Module 20-Single Phase Shell Type Transformer Module 21- 3 Phase Core Type Module 22- 3 Phase Shell Type Module 23- Comparison between Shell and Core CSA Module 24- Comparison between Shell and Core Type Module 25- Notes Module 26-Video Explaining The Components in 3D and Real Life Unit 4: Fundamentals of Magnetic Circuits Module 1- Introduction to Magnetic Circuits Module 2- Induced Emf and Current Module 3- Ampere Right Hand Rule Module 4- Magnetic Circuit and Important Definitions Module 5- Linear and Non Linear Materials Module 6-Flux Linkage and Reluctance Module 7- Analogy between Electric and Magnetic Circuits Module 8- Fringing Effect Module 9- Example 1 Magnetic Circuits Module 10- Example 2 Module 11- Example 3 Module 12- Application on Magnetic Circuit - Transformers Unit 5: Theoretical Part on Transformers Module 1- Introduction to Transformers Module 2- Construction of Transformer Module 3-Theory of Operation Module 4- Ideal Transformer Module 5-Non Ideal Transformer Module 6- Effect of Loading on Transformer Module 7- Transformer Regulation Module 8- Transformer Losses Module 9- Transformer Efficiency Module 10- Transformer Rating Module 11- Question 1 Module 12- Question 2 Module 13- Question 3 Module 14- Example 1 Module 15- Voltage Relation of Transformer Module 16- Transformer Exact Equivalent Circuit Module 17- Concept of Refereeing Module 18- Approximate Equivalent Circuit Unit 6: Synchronous Machines Module 1- Construction and Principle of Operation of Synchronous Generator Module 2- Principle of Operation of Synchronous Motor Module 3- Equivalent Circuit and Phasor Diagram of Non Salient Synchronous Machine Module 4-Solved Example 1 on Non Salient Machine Module 5-Solved Example 2 on Non Salient Machine Module 6-Solved Example 3 on Non Salient Machine Module 7- Solved Example 4 on Non Salient Machine Module 8-Solved Example 5 on Non Salient Machine Module 9-Solved Example 6 on Non Salient Machine Module 10- Equivalent Circuit and Phasor Diagram of Salient Synchronous Machine Module 11-Solved Example 1 on Salient Machine Module 12- Solved Example 2 on Salient Machine Module 13-Solved Example 3 on Salient Machine Module 14- Parallel Operation of Two Generators Module 15- Synchronization of Machine with Grid Unit 7: Induction Machines Module 1- Construction and Theory of Operation of Induction Machines Module 2- Equivalent Circuit and Power Flow in Induction Motor Module 3- Torque-Speed Characteristics of Induction Motor Module 4- Solved Example 1 on Induction Motor Module 5-Solved Example 2 on Induction Motor Module 6-Solved Example 3 on Induction Motor Module 7-Solved Example 4 on Induction Motor Module 8-Solved Example 5 on Induction Motor Module 9- Methods of Speed Control of Induction Motor Module 10- Methods of Starting of Induction Motor Module 11-Solved Example on Motor Starter Module 12- Principle of Operation of Doubly Fed Induction Generator Module 13-Self Excited Induction Generator This Electrical Machines for Electrical Engineering course holds a prestigious CPD accreditation, symbolising exceptional quality. The materials, brimming with knowledge, are regularly updated, ensuring their relevance. This Teaching Assistant course promises not just education but an evolving learning experience. Engage with this extraordinary collection, and prepare to enrich your personal and professional development. CPD 15 CPD hours / points Accredited by CPD Quality Standards Who is this course for? Professionals looking to expand their knowledge and skills in Electrical Machines for Electrical Engineering. Recent graduates seeking to enter the job market with a competitive edge. Individuals considering a career change into Electrical Machines for Electrical Engineering. Entrepreneurs aiming to gain insights into Electrical Machines for Electrical Engineering to boost their business strategies. Anyone interested in broadening their understanding of Electrical Machines for Electrical Engineering for personal or professional growth. Requirements No prior knowledge or experience is required to enrol in this Electrical Machines for Electrical Engineering course. Career path Completing Electrical Machines for Electrical Engineering can give you the initial boost to a world of exciting career opportunities.
Electrical Engineering - Electrical Machines Complete Training Overview Are you looking to begin your electrical machines career or want to develop more advanced skills in electrical machines? Then this electrical engineering - electrical machines complete online training course will set you up with a solid foundation to become a confident electrical engineer and help you to develop your expertise in electrical machines. This electrical engineering - electrical machines complete online training course is accredited by the CPD UK & IPHM. CPD is globally recognised by employers, professional organisations and academic intuitions, thus a certificate from CPD Certification Service creates value towards your professional goal and achievement. CPD certified certificates are accepted by thousands of professional bodies and government regulators here in the UK and around the world. Whether you are self-taught and you want to fill in the gaps for better efficiency and productivity, this electrical engineering - electrical machines complete online training course will set you up with a solid foundation to become a confident electrical engineer and develop more advanced skills. Gain the essential skills and knowledge you need to propel your career forward as a electrical engineer. The electrical engineering - electrical machines complete online training course will set you up with the appropriate skills and experience needed for the job and is ideal for both beginners and those currently working as a electrical engineer. This comprehensive electrical engineering - electrical machines complete online training course is the perfect way to kickstart your career in the field of electrical machines. This electrical engineering - electrical machines complete online training course will give you a competitive advantage in your career, making you stand out from all other applicants and employees. If you're interested in working as a electrical engineer or want to learn more skills on electrical machines but unsure of where to start, then this electrical engineering - electrical machines complete online training course will set you up with a solid foundation to become a confident electrical engineer and develop more advanced skills. As one of the leading course providers and most renowned e-learning specialists online, we're dedicated to giving you the best educational experience possible. This electrical engineering - electrical machines complete online training course is crafted by industry expert, to enable you to learn quickly and efficiently, and at your own pace and convenience. Who should take this course? This comprehensive electrical engineering - electrical machines complete online training course is suitable for anyone looking to improve their job prospects or aspiring to accelerate their career in this sector and want to gain in-depth knowledge of electrical machines. Entry Requirements There are no academic entry requirements for this electrical engineering - electrical machines complete online training course, and it is open to students of all academic backgrounds. As long as you are aged seventeen or over and have a basic grasp of English, numeracy and ICT, you will be eligible to enrol. Career path This electrical engineering - electrical machines complete online training course opens a brand new door for you to enter the relevant job market and also provides you with the chance to accumulate in-depth knowledge at the side of needed skills to become flourishing in no time. You will also be able to add your new skills to your CV, enhance your career and become more competitive in your chosen industry. Course Curriculum Course Content Introduction to Electric Machines Types of Electric Machines and Principle of Electricity Generation DC Machines Importance and Construction of DC Machines Armature Winding and EMF Equation Solved Example 1 Solved Example 2 Solved Example 3 Solved Example 4 Shunt and Series DC Machines Solved Example 1 on Separately Excited DC Machine Solved Example 2 on Separately Excited DC Machine Solved Example 3 on Shunt Generator Solved Example 4 on Shunt Generator Solved Example 5 on Series DC Generator Types and Applications of Compound DC Motors Torque-Speed Characteristics and Speed Control of Separately Excited DC Motor Torque-Speed Characteristics of Series DC Motor Solved Example 1 on Speed Control Solved Example 2 on Speed Control Starting of DC Machine Armature Reaction in DC Machines Losses in DC Machines Construction of Transformer Magnetic Circuit Inside Transformer Windings of Transformer Why are Windings Made of Copper Why are Windings Made of Copper Insulating Material and Transformer Oil Conservator of Transformer Breather of Transformer Bushings of Transformer Tap Changer of Transformer Cooling Tubes of Transformer Buchholz Relay of Transformer Explosion Vent Methods of Cooling Types of Transformers Power Transformer and Distribution Transformer Single Phase Core Type Transformer Single Phase Shell Type Transformer Three Phase Core Type Transformer Three Phase Shell Type Transformer Comparison between Shell and Core CSA Comparison between Shell and Core Type Notes Video Explaining The Components in 3D and Real Life Fundamentals of Magnetic Circuits for Electrical Engineering Magnetic Circuit and Important Definitions Linear and Non Linear Materials Flux Linkage and Reluctance Analogy between Electric and Magnetic Circuits Fringing Effect Example 1 Magnetic Circuits Example 2 Example 3 Application on Magnetic Circuit - Transformers Theoretical Part on Transformers Introduction to Transformers Construction of Transformer Theory of Operation Ideal Transformer Non Ideal Transformer Effect of Loading on Transformer Transformer Regulation Transformer Losses Transformer Efficiency Transformer Rating Question 1 Question 2 Question 3 Example 1 Voltage Relation of Transformer Transformer Exact Equivalent Circuit Concept of Refereeing Approximate Equivalent Circuit Synchronous Machines Construction and Principle of Operation of Synchronous Generator rinciple of Operation of Synchronous Motor Equivalent Circuit and Phasor Diagram of Non Salient Synchronous Machine Solved Example 1 on Non Salient Machine Solved Example 2 on Non Salient Machine Solved Example 3 on Non Salient Machine Solved Example 4 on Non Salient Machine lved Example 5 on Non Salient Machine Solved Example 6 on Non Salient Machine Equivalent Circuit and Phasor Diagram of Salient Synchronous Machine Solved Example 1 on Salient Machine Solved Example 2 on Salient Machine Solved Example 3 on Salient Machine Parallel Operation of Two Generators Synchronization of Machine with Grid Induction Machines Construction and Theory of Operation of Induction Machines Equivalent Circuit and Power Flow in Induction Motor Torque-Speed Characteristics of Induction Motor Solved Example 1 on Induction Motor Solved Example 2 on Induction Motor Solved Example 3 on Induction Motor Solved Example 4 on Induction Motor Solved Example 5 on Induction Motor Methods of Speed Control of Induction Motor Methods of Starting of Induction Motor Solved Example on Motor Starter Self Excited Induction Generator Recognised Accreditation CPD Certification Service This course is accredited by continuing professional development (CPD). CPD UK is globally recognised by employers, professional organisations, and academic institutions, thus a certificate from CPD Certification Service creates value towards your professional goal and achievement. CPD certificates are accepted by thousands of professional bodies and government regulators here in the UK and around the world. Many organisations look for employees with CPD requirements, which means, that by doing this course, you would be a potential candidate in your respective field. Certificate of Achievement Certificate of Achievement from Lead Academy After successfully passing the MCQ exam you will be eligible to order your certificate of achievement as proof of your new skill. The certificate of achievement is an official credential that confirms that you successfully finished a course with Lead Academy. Certificate can be obtained in PDF version at a cost of £12, and there is an additional fee to obtain a printed copy certificate which is £35.
Duration 4 Days 24 CPD hours This course is intended for This in an intermediate-level Java development course geared for students experienced with Java and Spring programming essentials. This course does not cover Java or Spring development basics. Overview Working within in an engaging, hands-on learning environment, guided by our expert team, attendees will: Understand the ReactiveX specification Understand the basics of Reactive Programming Discuss the advantages and limitations of Observables Write a client application capable of handling Reactive events Apply operators to event streams to filter, modify and combine the objects emitted by event publishers Select the appropriate type of Event Source Use both Cold and Hot Observables Deal with backpressure problems in reactive programming Develop a reactive web application using Spring WebFlux Define application flows of a WebFlux application Use the WebClient API to work with both synchronous and streaming APIs Develop Unit and Integration tests to test WebFlux endpoints Creating a reactive REST endpoint Become familiar with the basics of WebSockets Create a WebSocket endpoint using Spring Create a WebSocket client Understand the basics of NoSQL Become familiar with the basics of MongoDB Understand how the data in MongoDB can be retrieved using a Reactive API Define Spring Data MongoDB repositories Query the MongoDB using Spring Data Define a reactive repository using MongoDB Explore the Spring Data R2DBC API to perform reactive CRUD operations against a relational database Spring Data reative allow us to implement database operations relying on Reative Programming APIs. While the Spring R2DBC initiative aims to bring reactive programming to relational databaes, several NoSQL databases already provide this possibility. After an introduction to NoSQL and the MongoDB, this courses covers the APIs available to communicate with this NoSQL database using both blocking and reactive APIs.Introdcution to Reactive Spring is a comprehensive Java training workshop geared for experienced developers who wish to explore concurrent, asynchronous and reactive programming APIs and techniques using Spring. After an introduction to reactive programming, Reactive Streams and the Project Reactor APIs, this course will show how this APIs are integrated into Spring. Spring 5 includes Spring WebFlux, providing a reactive programming model for web applications, including support for Reactive REST APIs. Spring WebSocket assists in the creation of web applications which provide a full-duplex, two-way communication between client and server. Introduction to Reactive Programming Reactive Manifesto Introduce ReactiveX ReactiveX implementations The Observer, Iterator pattern and functional programming Discuss hot and cold publishers Reactive Streams API Introduce the Reactive Streams specification Publisher and Subscribers java.util.concurrent.Flow Transformation of Messages (Processor) Controlling messages Tutorial: Setup Eclipse for Using Maven Introduction Introduce the Reactor Building blocks Flux and Mono Creating observables Subscribing to a stream Testing Event Sources (introduction) Testing reactive implementations StepVerifier : test sequence of emitted items Defining expectations TestPublisher: produce test data to test downstream operators Reactive Operators Introduce Operators Show the use of marble diagrams Explain some commonly used operators Callback operators Schedulers (Multithreading) Thread usage of subscriber and consumer Using the subscribeOn method Introduce the Scheduler interface Using the observeOn method Backpressure Strategies for dealing with Backpressure ?reactive pull? backpressure Exception Handling Handling errors in onError Exception handling strategies Using onErrorReturn or onErrorNext operators Using the retry operators The Global Error Handler Spring Data Review Quick review of Spring Data repositories Query return types Defining Query methods Pagination and sorting R2DBC Reactive Relational Database Connectivity DatabaseClient Performing CRUD operations Reactive Query annotated methods Spring WebFlux: Introduction Annotated Controllers Functional Endpoints WebFlux configuration Creating a reactive REST endpoint Defining flows Defining the application flow Actions Defining decision Navigating flows RouterFunction View Technologies View technologies Using Thymeleaf to create the view View Configuration Spring WebClient: Introduction to WebClient Working with asynchronous and streaming APIs Making requests Handling the response Lab: WebClient WebTestClient Testing WebFlux server endpoints Testing controllers or functions Define integration tests Introduction to Spring Reactive WebSockets Be familiar with the basics of WebSockets Understand the HTTP handshake and upgrade Name some of the advantages of WebSockets Defining the WebSocket WebSocket Message Handling WebSocketSession Implementing the WebSockethandler Creating a Browser WebSocket Client WebSocket STOMP Streaming (or Simple) text-orientated messaging protocol Introduce SockJS Connecting to the STOMP endpoint Configuring the message broker STOMP destinations Reactive WebSocket Reactive WebSocket support Implement the reactive WebSocketHandler BigData Introduce Big Data Explain the need for enhanced data storage Introduction to MongoDB JavaScript Object Notation Overview Introduce Binary JSON (BSON) Starting the database Creating Collections and Documents Executing ?simple? database commands Introduce the ObjectID Searching for documents using query operators Updating and deleting documents MongoDB Compass Spring and MongoDB MongoDB Support in Spring Data MongoClient and MongoTemplate Spring Data MongoDB configuration @EnableMongoRepositories Adding documents to the database The @Document and @Field annotations Polymorphism and the _class property The Criteria object Spring Data MongoDB MongoRepository Field naming strategy Using JSON queries to find documents The @PersistenceConstructor annotation Reactive Repositories with MongoDB Using reactive repositories ReactiveMongoTemplate RxJava or Reactor Additional course details: Nexus Humans Introduction to Reactive Spring (TT3355 ) training program is a workshop that presents an invigorating mix of sessions, lessons, and masterclasses meticulously crafted to propel your learning expedition forward. This immersive bootcamp-style experience boasts interactive lectures, hands-on labs, and collaborative hackathons, all strategically designed to fortify fundamental concepts. Guided by seasoned coaches, each session offers priceless insights and practical skills crucial for honing your expertise. Whether you're stepping into the realm of professional skills or a seasoned professional, this comprehensive course ensures you're equipped with the knowledge and prowess necessary for success. While we feel this is the best course for the Introduction to Reactive Spring (TT3355 ) course and one of our Top 10 we encourage you to read the course outline to make sure it is the right content for you. Additionally, private sessions, closed classes or dedicated events are available both live online and at our training centres in Dublin and London, as well as at your offices anywhere in the UK, Ireland or across EMEA.
Overview This comprehensive course on Electrical Machines for Electrical Engineering will deepen your understanding on this topic. After successful completion of this course you can acquire the required skills in this sector. This Electrical Machines for Electrical Engineering comes with accredited certification from CPD, which will enhance your CV and make you worthy in the job market. So enrol in this course today to fast track your career ladder. How will I get my certificate? You may have to take a quiz or a written test online during or after the course. After successfully completing the course, you will be eligible for the certificate. Who is This course for? There is no experience or previous qualifications required for enrolment on this Electrical Machines for Electrical Engineering. It is available to all students, of all academic backgrounds. Requirements Our Electrical Machines for Electrical Engineering is fully compatible with PC's, Mac's, Laptop, Tablet and Smartphone devices. This course has been designed to be fully compatible with tablets and smartphones so you can access your course on Wi-Fi, 3G or 4G. There is no time limit for completing this course, it can be studied in your own time at your own pace. Career Path Having these various qualifications will increase the value in your CV and open you up to multiple sectors such as Business & Management, Admin, Accountancy & Finance, Secretarial & PA, Teaching & Mentoring etc. Course Curriculum 8 sections • 108 lectures • 14:20:00 total length •Module 1- Introduction to Electric Machines: 00:03:00 •Module 2- Types of Electric Machines and Principle of Electrical Generation: 00:09:00 •Module 1- Importance and Construction of DC Machines: 00:26:00 •Module 2- Armature Winding and EMF Equation: 00:40:00 •Module 3-Solved Example 1: 00:05:00 •Module 4-Solved Example 2: 00:04:00 •Module 5-Solved Example 3: 00:07:00 •Module 6-Solved Example 4: 00:06:00 •Module 7-Separately Excited DC Machine: 00:21:00 •Module 8-Shunt and Series DC Machines: 00:25:00 •Module 9-Solved Example 1 on Separately Excited DC Machine: 00:07:00 •Module 10-Solved Example 2 on Separately Excited DC Machine: 00:07:00 •Module 11-Solved Example 3 on Shunt Generator: 00:04:00 •Module 12-Solved Example 4 on Shunt Generator: 00:07:00 •Module 13-Solved Example 5 on Series DC Generator: 00:06:00 •Module 14-Types and Applications of Compound DC Motors: 00:07:00 •Module 15- Torque-Speed Characteristics and Speed Control of Separately Excited DC Motor: 00:33:00 •Module 16- Torque-Speed Characteristics of Series DC Motor: 00:08:00 •Module 17-Solved Example 1 on Speed Control: 00:08:00 •Module 18-Solved Example 2 on Speed Control: 00:06:00 •Module 19- Starting of DC Machine: 00:14:00 •Module 20- Armature Reaction in DC Machines: 00:10:00 •Module 21-Losses in DC Machines: 00:04:00 •Module 1- What is a Transformer: 00:02:00 •Module 2- Importance of Transformer: 00:04:00 •Module 3-Iron Core of Transformer: 00:04:00 •Module 4- Magnetic Circuit Inside Transformer: 00:05:00 •Module 5- Windings of Transformer: 00:03:00 •Module 6- Why are Windings Made of Copper: 00:01:00 •Module 7- Classification of Windings: 00:05:00 •Module 8- Insulating Material and Transformer Oil: 00:02:00 •Module 9- Conservator of Transformer: 00:03:00 •Module 10- Breather of Transformer: 00:04:00 •Module 11- Bushings of Transformer: 00:04:00 •Module 12- Tap Changer of Transformer: 00:03:00 •Module 13- Cooling Tubes of Transformer: 00:01:00 •Module 14- Buchholz Relay of Transformer: 00:02:00 •Module 15- Explosion Vent: 00:02:00 •Module 16- Methods of Cooling: 00:03:00 •Module 17-Types of Transformers: 00:03:00 •Module 18- Power Transformer and Distribution Transformer: 00:05:00 •Module 19- Single Phase Core Type Transformer: 00:04:00 •Module 20-Single Phase Shell Type Transformer: 00:05:00 •Module 21- 3 Phase Core Type: 00:02:00 •Module 22- 3 Phase Shell Type: 00:01:00 •Module 23- Comparison between Shell and Core CSA: 00:01:00 •Module 24- Comparison between Shell and Core Type: 00:01:00 •Module 25- Notes: 00:03:00 •Module 26-Video Explaining The Components in 3D and Real Life: 00:05:00 •Module 1- Introduction to Magnetic Circuits: 00:02:00 •Module 2- Induced Emf and Current: 00:04:00 •Module 3- Ampere Right Hand Rule: 00:04:00 •Module 4- Magnetic Circuit and Important Definitions: 00:06:00 •Module 5- Linear and Non Linear Materials: 00:03:00 •Module 6-Flux Linkage and Reluctance: 00:04:00 •Module 7- Analogy between Electric and Magnetic Circuits: 00:06:00 •Module 8- Fringing Effect: 00:02:00 •Module 9- Example 1 Magnetic Circuits: 00:07:00 •Module 10- Example 2: 00:03:00 •Module 11- Example 3: 00:06:00 •Module 12- Application on Magnetic Circuit - Transformers: 00:04:00 •Module 1- Introduction to Transformers: 00:02:00 •Module 2- Construction of Transformer: 00:02:00 •Module 3-Theory of Operation: 00:04:00 •Module 4- Ideal Transformer: 00:05:00 •Module 5-Non Ideal Transformer: 00:02:00 •Module 6- Effect of Loading on Transformer: 00:03:00 •Module 7- Transformer Regulation: 00:03:00 •Module 8- Transformer Losses: 00:03:00 •Module 9- Transformer Efficiency: 00:05:00 •Module 10- Transformer Rating: 00:02:00 •Module 11- Question 1: 00:01:00 •Module 12- Question 2: 00:02:00 •Module 13- Question 3: 00:01:00 •Module 14- Example 1: 00:01:00 •Module 15- Voltage Relation of Transformer: 00:04:00 •Module 16- Transformer Exact Equivalent Circuit: 00:06:00 •Module 17- Concept of Refereeing: 00:04:00 •Module 18- Approximate Equivalent Circuit: 00:02:00 •Module 1- Construction and Principle of Operation of Synchronous Generator: 00:29:00 •Module 2- Principle of Operation of Synchronous Motor: 00:24:00 •Module 3- Equivalent Circuit and Phasor Diagram of Non Salient Synchronous Machine: 00:29:00 •Module 4-Solved Example 1 on Non Salient Machine: 00:05:00 •Module 5-Solved Example 2 on Non Salient Machine: 00:11:00 •Module 6-Solved Example 3 on Non Salient Machine: 00:07:00 •Module 7- Solved Example 4 on Non Salient Machine: 00:04:00 •Module 8-Solved Example 5 on Non Salient Machine: 00:07:00 •Module 9-Solved Example 6 on Non Salient Machine: 00:03:00 •Module 10- Equivalent Circuit and Phasor Diagram of Salient Synchronous Machine: 00:39:00 •Module 11-Solved Example 1 on Salient Machine: 00:09:00 •Module 12- Solved Example 2 on Salient Machine: 00:05:00 •Module 13-Solved Example 3 on Salient Machine: 00:10:00 •Module 14- Parallel Operation of Two Generators: 00:17:00 •Module 15- Synchronization of Machine with Grid: 00:10:00 •Module 1- Construction and Theory of Operation of Induction Machines: 00:27:00 •Module 2- Equivalent Circuit and Power Flow in Induction Motor: 00:23:00 •Module 3- Torque-Speed Characteristics of Induction Motor: 00:20:00 •Module 4- Solved Example 1 on Induction Motor: 00:08:00 •Module 5-Solved Example 2 on Induction Motor: 00:06:00 •Module 6-Solved Example 3 on Induction Motor: 00:06:00 •Module 7-Solved Example 4 on Induction Motor: 00:18:00 •Module 8-Solved Example 5 on Induction Motor: 00:13:00 •Module 9- Methods of Speed Control of Induction Motor: 00:27:00 •Module 10- Methods of Starting of Induction Motor: 00:21:00 •Module 11-Solved Example on Motor Starter: 00:15:00 •Module 12- Principle of Operation of Doubly Fed Induction Generator: 00:11:00 •Module 13-Self Excited Induction Generator: 00:08:00 •Assignment - Electrical Machines for Electrical Engineering: 00:00:00
Highlights of the Course Course Type: Online Learning Duration: 1 to 2 hours Tutor Support: Tutor support is included Customer Support: 24/7 customer support is available Quality Training: The course is designed by an industry expert Recognised Credential: Recognised and Valuable Certification Completion Certificate: Free Course Completion Certificate Included Instalment: 3 Installment Plan on checkout What you will learn from this course? Gain comprehensive knowledge about electrical machines Understand the core competencies and principles of electrical machines Explore the various areas of electrical machines Know how to apply the skills you acquired from this course in a real-life context Become a confident and expert electrical engineer Electrical Machines Online Course for Electrical Engineers - Bundle Course Master the skills you need to propel your career forward in electrical machines. This course will equip you with the essential knowledge and skillset that will make you a confident electrical engineer and take your career to the next level. This comprehensive electrical machines course is designed to help you surpass your professional goals. The skills and knowledge that you will gain through studying this electrical machines course will help you get one step closer to your professional aspirations and develop your skills for a rewarding career. This comprehensive course will teach you the theory of effective electrical machines practice and equip you with the essential skills, confidence and competence to assist you in the electrical machines industry. You'll gain a solid understanding of the core competencies required to drive a successful career in electrical machines. This course is designed by industry experts, so you'll gain knowledge and skills based on the latest expertise and best practices. This extensive course is designed for electrical engineer or for people who are aspiring to specialise in electrical machines. Enrol in this electrical machines course today and take the next step towards your personal and professional goals. Earn industry-recognised credentials to demonstrate your new skills and add extra value to your CV that will help you outshine other candidates. Who is this Course for? This comprehensive electrical machines course is ideal for anyone wishing to boost their career profile or advance their career in this field by gaining a thorough understanding of the subject. Anyone willing to gain extensive knowledge on this electrical machines can also take this course. Whether you are a complete beginner or an aspiring professional, this course will provide you with the necessary skills and professional competence, and open your doors to a wide number of professions within your chosen sector. Entry Requirements This electrical machines course has no academic prerequisites and is open to students from all academic disciplines. You will, however, need a laptop, desktop, tablet, or smartphone, as well as a reliable internet connection. Assessment This electrical machines course assesses learners through multiple-choice questions (MCQs). Upon successful completion of the modules, learners must answer MCQs to complete the assessment procedure. Through the MCQs, it is measured how much a learner could grasp from each section. In the assessment pass mark is 60%. Advance Your Career This electrical machines course will provide you with a fresh opportunity to enter the relevant job market and choose your desired career path. Additionally, you will be able to advance your career, increase your level of competition in your chosen field, and highlight these skills on your resume. Recognised Accreditation This course is accredited by continuing professional development (CPD). CPD UK is globally recognised by employers, professional organisations, and academic institutions, thus a certificate from CPD Certification Service creates value towards your professional goal and achievement. Course Curriculum Course Content Introduction to Electric Machines 00:03:00 Types of Electric Machines and Principle of Electricity Generation 00:09:00 DC Machines Importance and Construction of DC Machines 00:26:00 Armature Winding and EMF Equation 00:39:00 Solved Example 1 00:04:00 Solved Example 2 00:03:00 Solved Example 3 00:07:00 Solved Example 4 00:06:00 Separately Excited DC Machine 00:20:00 Shunt and Series DC Machines 00:25:00 Solved Example 1 on Separately Excited DC Machine 00:07:00 Solved Example 2 on Separately Excited DC Machine 00:07:00 Solved Example 3 on Shunt Generator 00:04:00 Solved Example 4 on Shunt Generator 00:06:00 Solved Example 5 on Series DC Generator 00:06:00 Types and Applications of Compound DC Motors 00:07:00 Torque-Speed Characteristics and Speed Control of Separately Excited DC Motor 00:33:00 Torque-Speed Characteristics of Series DC Motor 00:08:00 Solved Example 1 on Speed Control 00:08:00 Solved Example 2 on Speed Control 00:05:00 Starting of DC Machine 00:13:00 Armature Reaction in DC Machines 00:10:00 Losses in DC Machines 00:03:00 Construction of Transformer What is The Construction of Transformer, Importance and Iron Core 00:02:00 Magnetic Circuit Inside Transformer 00:04:00 Windings of Transformer 00:03:00 Why are Windings Made of Copper 00:01:00 Classification of Windings 00:04:00 Insulating Material and Transformer Oil 00:02:00 Conservator of Transformer 00:02:00 Breather of Transformer 00:03:00 Bushings of Transformer 00:04:00 Tap Changer of Transformer 00:03:00 Cooling Tubes of Transformer 00:01:00 Buchholz Relay of Transformer 00:02:00 Explosion Vent In Transformer 00:02:00 Methods of Cooling In Transformer 00:02:00 Types of Transformers 00:02:00 Power Transformer and Distribution Transformer 00:05:00 Single Phase Core Type Transformer 00:04:00 Single Phase Shell Type Transformer 00:04:00 Three Phase Core Type Transformer 00:01:00 Three Phase Shell Type Transformer 00:01:00 Comparison between Shell and Core CSA 00:01:00 Comparison between Shell and Core Type 00:01:00 Notes 00:03:00 Video Explaining The Components in 3D and Real Life 00:04:00 Fundamentals of Magnetic Circuits for Electrical Engineering Introduction to Magnetic Circuits 00:02:00 Induced Emf and Current 00:04:00 Ampere Right Hand Rule 00:04:00 Magnetic Circuit and Important Definitions 00:06:00 Linear and Non Linear Materials 00:02:00 Flux Linkage and Reluctance 00:03:00 Analogy between Electric and Magnetic Circuits 00:05:00 Fringing Effect 00:01:00 Example 1 Magnetic Circuits 00:06:00 Example 2 00:02:00 Example 3 00:05:00 Application on Magnetic Circuit - Transformers 00:03:00 Theoretical Part on Transformers Introduction to Transformers 00:02:00 Construction of Transformer 00:01:00 Theory of Operation 00:04:00 Ideal Transformer 00:04:00 Non Ideal Transformer 00:02:00 Effect of Loading on Transformer 00:03:00 Transformer Regulation 00:02:00 Transformer Losses 00:03:00 Transformer Efficiency 00:04:00 Transformer Rating 00:01:00 Question 1 00:01:00 Question 2 00:01:00 Question 3 00:01:00 Example 1 00:01:00 Voltage Relation of Transformer 00:04:00 Transformer Exact Equivalent Circuit 00:06:00 Concept of Refereeing 00:04:00 Approximate Equivalent Circuit 00:02:00 Synchronous Machines Construction and Principle of Operation of Synchronous Generator 00:29:00 Principle of Operation of Synchronous Motor 00:24:00 Equivalent Circuit and Phasor Diagram of Non Salient Synchronous Machine 00:29:00 Solved Example 1 on Non Salient Machine 00:04:00 Solved Example 2 on Non Salient Machine 00:10:00 Solved Example 3 on Non Salient Machine 00:07:00 Solved Example 4 on Non Salient Machine 00:04:00 Solved Example 5 on Non Salient Machine 00:07:00 Solved Example 6 on Non Salient Machine 00:03:00 Equivalent Circuit and Phasor Diagram of Salient Synchronous Machine 00:38:00 Solved Example 1 on Salient Machine 00:09:00 Solved Example 2 on Salient Machine 00:05:00 Solved Example 3 on Salient Machine 00:09:00 Parallel Operation of Two Generators 00:17:00 Synchronization of Machine with Grid 00:10:00 Induction Machines Construction and Theory of Operation of Induction Machines 00:27:00 Equivalent Circuit and Power Flow in Induction Motor 00:23:00 Torque-Speed Characteristics of Induction Motor 00:19:00 Solved Example 1 on Induction Motor 00:07:00 Solved Example 2 on Induction Motor 00:06:00 Solved Example 3 on Induction Motor 00:06:00 Solved Example 4 on Induction Motor 00:18:00 Solved Example 5 on Induction Motor 00:13:00 Methods of Speed Control of Induction Motor 00:27:00 Methods of Starting of Induction Motor 00:21:00 Solved Example on Motor Starter 00:14:00 Principle of Operation of Doubly Fed Induction Generator 00:11:00 Self Excited Induction Generator 00:08:00 Obtain Your Certificate Order Your Certificate of Achievement 00:00:00 Get Your Insurance Now Get Your Insurance Now 00:00:00 Feedback Feedback 00:00:00
Overview Uplift Your Career & Skill Up to Your Dream Job - Learning Simplified From Home! Kickstart your career & boost your employability by helping you discover your skills, talents and interests with our special Electrical Machines for Electrical Engineering Course. You'll create a pathway to your ideal job as this course is designed to uplift your career in the relevant industry. It provides professional training that employers are looking for in today's workplaces. The Electrical Machines for Electrical Engineering Course is one of the most prestigious training offered at StudyHub and is highly valued by employers for good reason. This Electrical Machines for Electrical Engineering Course has been designed by industry experts to provide our learners with the best learning experience possible to increase their understanding of their chosen field. This Electrical Machines for Electrical Engineering Course, like every one of Study Hub's courses, is meticulously developed and well researched. Every one of the topics is divided into elementary modules, allowing our students to grasp each lesson quickly. At StudyHub, we don't just offer courses; we also provide a valuable teaching process. When you buy a course from StudyHub, you get unlimited Lifetime access with 24/7 dedicated tutor support. Why buy this Electrical Machines for Electrical Engineering? Unlimited access to the course for forever Digital Certificate, Transcript, student ID all included in the price Absolutely no hidden fees Directly receive CPD accredited qualifications after course completion Receive one to one assistance on every weekday from professionals Immediately receive the PDF certificate after passing Receive the original copies of your certificate and transcript on the next working day Easily learn the skills and knowledge from the comfort of your home Certification After studying the course materials of the Electrical Machines for Electrical Engineering there will be a written assignment test which you can take either during or at the end of the course. After successfully passing the test you will be able to claim the pdf certificate for £5.99. Original Hard Copy certificates need to be ordered at an additional cost of £9.60. Who is this course for? This Electrical Machines for Electrical Engineering course is ideal for Students Recent graduates Job Seekers Anyone interested in this topic People already working in the relevant fields and want to polish their knowledge and skill. Prerequisites This Electrical Machines for Electrical Engineering does not require you to have any prior qualifications or experience. You can just enrol and start learning.This Electrical Machines for Electrical Engineering was made by professionals and it is compatible with all PC's, Mac's, tablets and smartphones. You will be able to access the course from anywhere at any time as long as you have a good enough internet connection. Career path As this course comes with multiple courses included as bonus, you will be able to pursue multiple occupations. This Electrical Machines for Electrical Engineering is a great way for you to gain multiple skills from the comfort of your home. Course Curriculum Unit 1: Introduction to Electric Machines Module 1- Introduction to Electric Machines 00:03:00 Module 2- Types of Electric Machines and Principle of Electrical Generation 00:09:00 Unit 2: DC Machines Module 1- Importance and Construction of DC Machines 00:26:00 Module 2- Armature Winding and EMF Equation 00:40:00 Module 3-Solved Example 1 00:05:00 Module 4-Solved Example 2 00:04:00 Module 5-Solved Example 3 00:07:00 Module 6-Solved Example 4 00:06:00 Module 7-Separately Excited DC Machine 00:21:00 Module 8-Shunt and Series DC Machines 00:25:00 Module 9-Solved Example 1 on Separately Excited DC Machine 00:07:00 Module 10-Solved Example 2 on Separately Excited DC Machine 00:07:00 Module 11-Solved Example 3 on Shunt Generator 00:04:00 Module 12-Solved Example 4 on Shunt Generator 00:07:00 Module 13-Solved Example 5 on Series DC Generator 00:06:00 Module 14-Types and Applications of Compound DC Motors 00:07:00 Module 15- Torque-Speed Characteristics and Speed Control of Separately Excited DC Motor 00:33:00 Module 16- Torque-Speed Characteristics of Series DC Motor 00:08:00 Module 17-Solved Example 1 on Speed Control 00:08:00 Module 18-Solved Example 2 on Speed Control 00:06:00 Module 19- Starting of DC Machine 00:14:00 Module 20- Armature Reaction in DC Machines 00:10:00 Module 21-Losses in DC Machines 00:04:00 Unit 3: Construction of Transformers Module 1- What is a Transformer 00:02:00 Module 2- Importance of Transformer 00:04:00 Module 3-Iron Core of Transformer 00:04:00 Module 4- Magnetic Circuit Inside Transformer 00:05:00 Module 5- Windings of Transformer 00:03:00 Module 6- Why are Windings Made of Copper 00:01:00 Module 7- Classification of Windings 00:05:00 Module 8- Insulating Material and Transformer Oil 00:02:00 Module 9- Conservator of Transformer 00:03:00 Module 10- Breather of Transformer 00:04:00 Module 11- Bushings of Transformer 00:04:00 Module 12- Tap Changer of Transformer 00:03:00 Module 13- Cooling Tubes of Transformer 00:01:00 Module 14- Buchholz Relay of Transformer 00:02:00 Module 15- Explosion Vent 00:02:00 Module 16- Methods of Cooling 00:03:00 Module 17-Types of Transformers 00:03:00 Module 18- Power Transformer and Distribution Transformer 00:05:00 Module 19- Single Phase Core Type Transformer 00:04:00 Module 20-Single Phase Shell Type Transformer 00:05:00 Module 21- 3 Phase Core Type 00:02:00 Module 22- 3 Phase Shell Type 00:01:00 Module 23- Comparison between Shell and Core CSA 00:01:00 Module 24- Comparison between Shell and Core Type 00:01:00 Module 25- Notes 00:03:00 Module 26-Video Explaining The Components in 3D and Real Life 00:05:00 Unit 4: Fundamentals of Magnetic Circuits Module 1- Introduction to Magnetic Circuits 00:02:00 Module 2- Induced Emf and Current 00:04:00 Module 3- Ampere Right Hand Rule 00:04:00 Module 4- Magnetic Circuit and Important Definitions 00:06:00 Module 5- Linear and Non Linear Materials 00:03:00 Module 6-Flux Linkage and Reluctance 00:04:00 Module 7- Analogy between Electric and Magnetic Circuits 00:06:00 Module 8- Fringing Effect 00:02:00 Module 9- Example 1 Magnetic Circuits 00:07:00 Module 10- Example 2 00:03:00 Module 11- Example 3 00:06:00 Module 12- Application on Magnetic Circuit - Transformers 00:04:00 Unit 5: Theoretical Part on Transformers Module 1- Introduction to Transformers 00:02:00 Module 2- Construction of Transformer 00:02:00 Module 3-Theory of Operation 00:04:00 Module 4- Ideal Transformer 00:05:00 Module 5-Non Ideal Transformer 00:02:00 Module 6- Effect of Loading on Transformer 00:03:00 Module 7- Transformer Regulation 00:03:00 Module 8- Transformer Losses 00:03:00 Module 9- Transformer Efficiency 00:05:00 Module 10- Transformer Rating 00:02:00 Module 11- Question 1 00:01:00 Module 12- Question 2 00:02:00 Module 13- Question 3 00:01:00 Module 14- Example 1 00:01:00 Module 15- Voltage Relation of Transformer 00:04:00 Module 16- Transformer Exact Equivalent Circuit 00:06:00 Module 17- Concept of Refereeing 00:04:00 Module 18- Approximate Equivalent Circuit 00:02:00 Unit 6: Synchronous Machines Module 1- Construction and Principle of Operation of Synchronous Generator 00:29:00 Module 2- Principle of Operation of Synchronous Motor 00:24:00 Module 3- Equivalent Circuit and Phasor Diagram of Non Salient Synchronous Machine 00:29:00 Module 4-Solved Example 1 on Non Salient Machine 00:05:00 Module 5-Solved Example 2 on Non Salient Machine 00:11:00 Module 6-Solved Example 3 on Non Salient Machine 00:07:00 Module 7- Solved Example 4 on Non Salient Machine 00:04:00 Module 8-Solved Example 5 on Non Salient Machine 00:07:00 Module 9-Solved Example 6 on Non Salient Machine 00:03:00 Module 10- Equivalent Circuit and Phasor Diagram of Salient Synchronous Machine 00:39:00 Module 11-Solved Example 1 on Salient Machine 00:09:00 Module 12- Solved Example 2 on Salient Machine 00:05:00 Module 13-Solved Example 3 on Salient Machine 00:10:00 Module 14- Parallel Operation of Two Generators 00:17:00 Module 15- Synchronization of Machine with Grid 00:10:00 Unit 7: Induction Machines Module 1- Construction and Theory of Operation of Induction Machines 00:27:00 Module 2- Equivalent Circuit and Power Flow in Induction Motor 00:23:00 Module 3- Torque-Speed Characteristics of Induction Motor 00:20:00 Module 4- Solved Example 1 on Induction Motor 00:08:00 Module 5-Solved Example 2 on Induction Motor 00:06:00 Module 6-Solved Example 3 on Induction Motor 00:06:00 Module 7-Solved Example 4 on Induction Motor 00:18:00 Module 8-Solved Example 5 on Induction Motor 00:13:00 Module 9- Methods of Speed Control of Induction Motor 00:27:00 Module 10- Methods of Starting of Induction Motor 00:21:00 Module 11-Solved Example on Motor Starter 00:15:00 Module 12- Principle of Operation of Doubly Fed Induction Generator 00:11:00 Module 13-Self Excited Induction Generator 00:08:00 Assignment Assignment - Electrical Machines for Electrical Engineering 00:00:00
Take your understanding of electrical generators, excitation systems, and governing systems to the next level with EnergyEdge's classroom training. Enroll now and excel in your field!
About this Training Course This 5 full-day course provides a comprehensive understanding of the various types of generators, exciters, automatic voltage regulators (AVRs), governing systems, and protective systems. The focus will be on maximizing the efficiency, reliability and longevity of these equipment by providing an understanding of the characteristics, selection criteria, common problems and repair techniques, preventive and predictive maintenance. The emphasis of this course is on protective systems, inspection methods, diagnostic testing, troubleshooting, modern maintenance techniques, refurbishment, rewind and upgrade options, as well as advanced methods for preventing partial discharge and other failures. Training Objectives Equipment Operation: Gain a thorough understanding of the operating characteristics of generators, exciters, AVR's and protective systems Equipment Diagnostics and Inspection: Learn in detail all the diagnostic techniques and inspections required of critical components of generators, exciters, AVR's and protective systems Equipment Testing: Understand thoroughly all the tests required for the various types of generators, exciters, AVR's and protective systems Electrical Generator Protective Systems: Gain a thorough understanding of all Electrical generator protective systems including: all electrical relays, tripping mechanisms, protective systems for negative phase sequence (unbalance loading), loss of excitation, over fluxing protection (over-voltage and underfrequency), reverse power (generator monitoring), over-speeding, pole slipping / out of step (sudden increase in torque or weakness in excitation), Class A protection, Class B protection Equipment Maintenance and Troubleshooting: Determine all the maintenance and troubleshooting activities required to minimize the downtime and operating cost of generators, exciters, AVR's and protective systems Equipment Repair and Refurbishment: Gain a detailed understanding of the various methods used to repair and refurbish generators, exciters, AVR's and protective systems Equipment Rewind and Upgrade Options: Discover all options available to rewind and upgrade the generator rotor and stator to enhance the output and reduce downtime Efficiency, Reliability, and Longevity: Learn the various methods used to maximize the efficiency, reliability, and longevity of generators, exciters, AVR's and protective systems Advanced Methods to Prevent Failure: Gain a thorough understanding of all the methods used to prevent partial discharge, and other failures in generators, exciters, AVR's and protective systems Equipment Sizing: Gain a detailed understanding of all the calculations and sizing techniques used for generators, exciters, AVR's and protective systems Design Features: Understand all the design features that improve the efficiency, reliability of generators, exciters, AVR's and protective systems Equipment Selection: Learn how to select generators, exciters, AVR's and protective systems by using the performance characteristics and selection criteria that you will learn in this course Equipment Enclosures and Sealing Methods: Learn about the various types of enclosures and sealing arrangements used for generators, exciters, AVR's and protective systems Equipment Commissioning: Understand all the commissioning requirements for generators, exciters, AVR's and protective systems Equipment Codes and Standards: Learn all the codes and standards applicable for generators, exciters, AVR's and protective systems Equipment Causes and Modes of Failures: Understand causes and modes of failures of generators, exciters, AVR's and protective systems System Design: Learn all the requirements for designing different types of generators, exciters, AVR's and protective systems Target Audience Engineers of all disciplines Managers Technicians Maintenance personnel Other technical individuals Course Level Basic or Foundation Training Methods Your specialist course leader relies on a highly interactive training method to enhance the learning process. This method ensures that all participants gain a complete understanding of all topics covered. The training environment is highly stimulating, challenging, and effective because the participants will learn by case studies which will allow them to apply the material taught to their own organization. Each delegate will receive a copy of the following materials written by the instructor: ELECTRICAL EQUIPMENT HANDBOOK' published by McGraw-Hill in 2003 (600 pages) Generator Inspection, Testing, Maintenance, Protective Systems and Refurbishment Manual (this manual covers all the inspection and maintenance activities as well as all protective systems required for generators - 400 pages) Trainer Your specialist course leader has more than 32 years of practical engineering experience with Ontario Power Generation (OPG), one of the largest electric utility in North America. He was previously involved in research on power generation equipment with Atomic Energy of Canada Limited at their Chalk River and Whiteshell Nuclear Research Laboratories. While working at OPG, he acted as a Training Manager, Engineering Supervisor, System Responsible Engineer and Design Engineer. During the period of time, he worked as a Field Engineer and Design Engineer, he was responsible for the operation, maintenance, diagnostics, and testing of gas turbines, steam turbines, generators, motors, transformers, inverters, valves, pumps, compressors, instrumentation and control systems. Further, his responsibilities included designing, engineering, diagnosing equipment problems and recommending solutions to repair deficiencies and improve system performance, supervising engineers, setting up preventive maintenance programs, writing Operating and Design Manuals, and commissioning new equipment. Later, he worked as the manager of a section dedicated to providing training for the staff at the power stations. The training provided by him covered in detail the various equipment and systems used in power stations. In addition, he has taught courses and seminars to more than four thousand working engineers and professionals around the world, specifically Europe and North America. He has been consistently ranked as 'Excellent' or 'Very Good' by the delegates who attended his seminars and lectures. He written 5 books for working engineers from which 3 have been published by McGraw-Hill, New York. Below is a list of the books authored by him; Power Generation Handbook: Gas Turbines, Steam Power Plants, Co-generation, and Combined Cycles, second edition, (800 pages), McGraw-Hill, New York, October 2011. Electrical Equipment Handbook (600 pages), McGraw-Hill, New York, March 2003. Power Plant Equipment Operation and Maintenance Guide (800 pages), McGraw-Hill, New York, January 2012. Industrial Instrumentation and Modern Control Systems (400 pages), Custom Publishing, University of Toronto, University of Toronto Custom Publishing (1999). Industrial Equipment (600 pages), Custom Publishing, University of Toronto, University of Toronto, University of Toronto Custom Publishing (1999). Furthermore, he has received the following awards: The first 'Excellence in Teaching' award offered by PowerEdge, Singapore, in December 2016 The first 'Excellence in Teaching' award offered by the Professional Development Center at University of Toronto (May, 1996). The 'Excellence in Teaching Award' in April 2007 offered by TUV Akademie (TUV Akademie is one of the largest Professional Development centre in world, it is based in Germany and the United Arab Emirates, and provides engineering training to engineers and managers across Europe and the Middle East). Awarded graduation 'With Distinction' from Dalhousie University when completed Bachelor of Engineering degree (1983). Lastly, he was awarded his Bachelor of Engineering Degree 'with distinction' from Dalhousie University, Halifax, Nova Scotia, Canada. He also received a Master of Applied Science in Engineering (M.A.Sc.) from the University of Ottawa, Canada. He is also a member of the Association of Professional Engineers in the province of Ontario, Canada. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information post training support and fees applicable Accreditions And Affliations